期刊文献+
共找到1,525篇文章
< 1 2 77 >
每页显示 20 50 100
Harmful evaluation of heavy metals from soil layer to the groundwater: Take the Jilin Hunchun Basin as an example 被引量:1
1
作者 Xiao-Dong Guo Qiang Liu +3 位作者 Hui-Rong Zhang Xu-Fei Shi Chuan-Yu Qin Zhi-Qiang Zhang 《China Geology》 CAS CSCD 2024年第1期116-124,共9页
The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the ... The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the theory of groundwater circulation and solid-liquid equilibrium,a simple and easy-touse flux model of soil heavy metals migrating to groundwater is constructed.Based on groundwater environmental capacity,an innovative method for evaluating the harm of heavy metals in soil to groundwater is proposed,which has been applied in Hunchun Basin,Jilin Province,China.The results show that the fluxes of soil heavy metals into groundwater in the study area are Zn,Cu,As,Pb,Cd,Ni,and Hg in descending order.The content of heavy metals in groundwater(As,Hg,Cu,Pb,Zn,Ni,and Cd)in most areas has not risen to the threshold of environmental capacity within 10 years.The harm levels of soil heavy metals to groundwater in the most townships soils are at the moderate level or below.This evaluation method can quantify the flux of soil heavy metals into groundwater simply and quickly,determine the residual capacity of groundwater to heavy metals,evaluate the harm level of soil heavy metals to groundwater,provide support for relevant departments to carry out environmental protection of soil and groundwater,and provide a reference to carry out similar studies for related scholars. 展开更多
关键词 soil heavy metals As+Hg+Cu+Pb+Zn+Ni+Cd Environmental capacity groundwater Hazard degree Migration flux model Agricultural geological survey engineering Hunchun Basin Jilin Province
下载PDF
Investigations on Nitrate Pollution of Soil, Groundwater and Vegetable from Three Typical Farmlands in Beijing Region, China 被引量:13
2
作者 DU Lian-feng ZHAO Tong-ke ZHANG Cheng-jun AN Zhi-zhuang WU Qiong LIU Bao-cun LI Peng MA Mao-ting 《Agricultural Sciences in China》 CAS CSCD 2011年第3期423-430,共8页
The aim of this study was to determine the nitrate pollution status of soil, groundwater, and vegetable from three typical farmlands (croplands, vegetable fields, and orchards) in Beijing region. During the investig... The aim of this study was to determine the nitrate pollution status of soil, groundwater, and vegetable from three typical farmlands (croplands, vegetable fields, and orchards) in Beijing region. During the investigation, hundreds of the soil, groundwater, and vegetable samples from three typical farmlands were collected and analyzed. In addition, attributes of all samples were recorded for data analysis. The results showed that nitrate was substantially accumulated in soil profiles, while the soil nitrate concentrations of vegetable fields and orchards were higher than those of croplands. Nitrate concentration in 0-30 cm soil of vegetable field and orchard were 3.8 and 1.2 times of that of cropland, respectively. Nitrate content of groundwater in vegetable field was 13.8 mg L-1 (with the over-standard ratio 44.8%), which was 2.8 folds of that in cropland. Nitrate concentration of groundwater under orchard was 9.3 mg L-1 (with the over-standard ratio 23.5%), which was 1.9 folds of that in cropland. High concentrations of the nitrate in vegetables were detected, particularly green leafy vegetables ranked first with 2 685.5 mg kg-1, followed by rhizome vegetables, cabbages, and fruit vegetables. The nitrate over-standard ratios of rhizome vegetables, green leafy vegetables, fruit vegetables, and cabbages were 80.9, 37.9, 29.7, and 2.2%, respectively. The results revealed that the high nitrate concentrations of soil, vegetable, and groundwater might result from the high fertilization dose. 展开更多
关键词 FARMLAND VEGETABLES groundwater soil NITRATE
下载PDF
Influence of groundwater drawdown on excavation responses e A case history in Bukit Timah granitic residual soils 被引量:12
3
作者 Wengang Zhang Wei Wang +3 位作者 Dong Zhou Runhong Zhang A.T.C. Goh Zhongjie Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期856-864,共9页
Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BT... Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BTG) residual soils and characterized by significant groundwater drawdown, due to dewatering work in complex site conditions, insufficient effective waterproof measures and more permeable soils. A two-dimensional numerical model was developed for back analysis of retaining wall movement and ground surface settlement. Comparisons of these measured excavation responses with the calculated performances were carried out, upon which the numerical simulation procedures were calibrated. In addition, the influences of groundwater drawdown on the wall deflection and ground surface settlement were numerically investigated and summarized. The performances were also compared with some commonly used empirical charts, and the results indicated that these charts are less applicable for cases with significant groundwater drawdowns. It is expected that these general behaviors will provide useful references and insights for future projects involving excavation in BTG residual soils under significant groundwater drawdowns. 展开更多
关键词 Braced excavation Bukit Timah granitic (BTG) residual soil Wall deflection groundwater drawdown Empirical charts
下载PDF
Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary 被引量:5
4
作者 XIE Wen-ping YANG Jing-song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期711-722,共12页
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh... To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area. 展开更多
关键词 antecedent precipitation index groundwater depth soil water content ASSESSMENT
下载PDF
The Effects of Groundwater Depth on the Soil Evaporation in Horqin Sandy Land, China 被引量:6
5
作者 YANG Tingting ALA Musa +1 位作者 GUAN Dexin WANG Anzhi 《Chinese Geographical Science》 SCIE CSCD 2021年第4期727-734,共8页
The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not ... The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not explicitly treated. In this paper, we combine a simulation experiment and a water flow module of HYDRUS-1D model to study the variation in soil evaporation under different groundwater depth conditions and the relationship between groundwater depth and evaporation efficiency in Horqin Sandy Land, China.The results showed that with an increase in groundwater depth, the evaporation of soil and the recharge of groundwater decrease. In this study, the groundwater recharge did not account for more than 21% of the soil evaporation for the depths of groundwater examined. The soil water content at 60 cm was less affected by the evaporation efficiency when the mean groundwater depth was 61 cm during the experimental period. In addition, the evaporation efficiency(the ratio of actual evaporation to potential evaporation) decreases with the increase in groundwater depth during the experiment. Furthermore, the soil evaporation was not affected by groundwater when the groundwater depth was deeper than 239 cm. 展开更多
关键词 groundwater depth soil evaporation evaporation efficiency HYDRUS-1D
下载PDF
Multimedia model of atrazine in plant-soil-groundwater system with a fugacity approach 被引量:1
6
作者 Ye, C.-m. Lei, Z.-f. +2 位作者 Wang, X.-j. Gong, A.-j. Zheng, H.-h. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第4期466-471,共6页
The application of atrazine in China during the last ten years has led to some environmental problems. In this paper, the multimedia model of atrazine in soil-plant-groundwater system at Baiyangdian Lake area in North... The application of atrazine in China during the last ten years has led to some environmental problems. In this paper, the multimedia model of atrazine in soil-plant-groundwater system at Baiyangdian Lake area in Northern China was established using a fugacity approach, and verified with observed values. The model involved 7 environmental compartments which are air, groundwater, soil, corn roots, corn stem, corn leaf and kernel of corn. The results showed that the relative errors between calculated and observed values have a mean value of 24.7%, the highest value is 48% and the lowest value is 1.4%. All these values indicated that this multimedia model can be used to simulate the environmental fate of atrazine. Both the calculated and observed values of concentrations of atrazine in plant compartments are in the following order: in corn roots > in corn stem > in kernel of corn > in corn leaf, it exhibited a good regularity. The prediction results indicated that concentrations of atrazine in the groundwater and kernel of corn will override the limitation of 3 μg/L and 0.05 mg/kg respectively. 展开更多
关键词 Concentration (process) Error detection groundwater LAKES Plants (botany) soilS
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis 被引量:2
7
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 groundwater NITRATE soil Spatial-temporal variation Geostatistical analysis
下载PDF
Geogenic Pollution of Groundwater Quality in Gampaha District, Sri Lanka: A Case Study of Groundwater Acidification from Rathupaswala
8
作者 Ishara Pathirage Anushka Upamali Rajapaksha +1 位作者 S. P. Sucharitha Bandara G. W. A. Rohan Fernando 《International Journal of Geosciences》 CAS 2024年第8期590-604,共15页
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community... Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis. 展开更多
关键词 groundwater Acidification Acid Sulphate soils (AAS) Ion Chromatography groundwater Quality
下载PDF
Applications of Monitored Natural Attenuation in Contaminated Soil and Groundwater 被引量:1
9
作者 Li Xiaoping Cheng Xi 《Meteorological and Environmental Research》 CAS 2014年第5期31-35,共5页
Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ec... Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ecological risks by natural attenuation (NA). Because of cost-effective and sustainable cleanup, monitored natural attenuation (MNA) and enhanced natural attenuation (ENA) have been gaining more attention recently, especially in the respects of ecological risk-oriented contaminated land management and a follow-up measure after active remediation. The uses and procedures of MNA for contaminated site cleanup and remediation in USA and EU were introduced firstly, and then possible applications of MNA in China were suggested. More developments and practices of MNA and ENA for managing contaminated sites in China are expected. 展开更多
关键词 Contaminated soil Contaminated groundwater Monitored natural attenuation APPLICATION China
下载PDF
Investigation of soil and groundwater environment in urban area during post-industrial era: A case study of brownfield in Zhenjiang, Jiangsu Province, China 被引量:6
10
作者 Shuai Yang Wei-ya Ge +1 位作者 Hong-han Chen Wen-li Xu 《China Geology》 2019年第4期501-511,共11页
With the adjustment of industrial structure,many high pollution enterprises will gradually shut down.This process will produce a large number of high-risk pollution plots and cause a series of environmental problems.I... With the adjustment of industrial structure,many high pollution enterprises will gradually shut down.This process will produce a large number of high-risk pollution plots and cause a series of environmental problems.In this study,geophysical detection and direct push technology were applied to investigate soil and groundwater pollution in a typical brownfield in Zhenjiang,Jiangsu province,China.The results showed that Chlorotoluene and its ramification were the main pollutants for the brownfield.Pollution decreased with depth and was quite uneven in the brownfield.Production and wastewater treatment areas were heavily polluted,where volatile organic compounds contaminated and semi-volatile organic compounds were found 12 m and 15 m below the land surface,respectively.About 18880 m3 groundwater was contaminated.This study is significant to develop a geological survey work mode for the postindustrial era. 展开更多
关键词 Post-industrial BROWNFIELD Organic INTERMEDIATE Environmental GEOLOGICAL survey engineering soil and groundwater pollution Jiangsu PROVINCE
下载PDF
Distribution of atrazine in a crop-soil-groundwater system at Baiyangdian Lake area in China
11
作者 YE Chang ming GONG Ai jun +2 位作者 WANG Xing jun ZHENG He hui LEI Zhi fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第2期148-152,共5页
In this paper, the concentration distribution and environmental fate of atrazine in a crop soil groundwater system at Baiyangdian Lake area of North China were studied. The concentration of the herbicide in spatial... In this paper, the concentration distribution and environmental fate of atrazine in a crop soil groundwater system at Baiyangdian Lake area of North China were studied. The concentration of the herbicide in spatial and vertical soils, and in roots, stem, leaf, corncob and kernel of corn, and in groundwater were measured by HPLC. The results showed that the variation of spatial concentration of atrazine in soil can be described by first order kinetics equation which has a half life of 360 days and a rate constant of 0.0019d -1 . The vertical variation of atrazine concentration with soil depth follows the exponential decay law. After 120 days following atrazine application, the mass distributions of this herbicide in crop soil groundwater system are 71% in soil, 20% in groundwater and 1% in crop respectively, and 8% due to loss by degradation or often removal processes. The order of atrazine concentration in every part of corn crop is in roots>in corncob>in kernel of corn>in leaf. 展开更多
关键词 ATRAZINE soil corn crop groundwater FATE China
下载PDF
The Mechanism of Nitrate Pollution in Soil and Groundwater
12
作者 王志敏 诸葛敏 杨玉峥 《科技视界》 2013年第36期205-205,206,共2页
Soil and groundwater which are important natural resources are closely related with human health.It will be hard to recover,if it is polluted.Nitrate has become one of the most serious harmful substances contaminated ... Soil and groundwater which are important natural resources are closely related with human health.It will be hard to recover,if it is polluted.Nitrate has become one of the most serious harmful substances contaminated in soil and groundwater.A large number of studies have shown that high fertilizer and irrigation was the main reason of soil and groundwater pollution.Pollution is mainly concentrated in agricultural developed area. 展开更多
关键词 英语学习 学习方法 阅读知识 阅读材料
下载PDF
Potential Groundwater Pollution Risks by Heavy Metals from Agricultural Soil in Songon Area(Abidjan,Cote d’Ivoire) 被引量:1
13
作者 Innocent K.Kouame Lazare K.Kouassi +5 位作者 Brou Dibi Kouame M.Adou Ioan D.Rascanu Gheorghe Romanescu Issiaka Savane Ion Sandu 《Journal of Environmental Protection》 2013年第12期1441-1448,共8页
The soil samples were collected taking into account the land use in Songon area. The hydraulic conductivity (K) of soils was characterized in-situ when specific yield (Sy), pHw and concentrations of Cooper, Iron, Zinc... The soil samples were collected taking into account the land use in Songon area. The hydraulic conductivity (K) of soils was characterized in-situ when specific yield (Sy), pHw and concentrations of Cooper, Iron, Zinc, Cadmium, Chromium and Lead were measured in the laboratory. Pollution load indices (PLI) were calculated to evaluate the soil contamination levels. The soils were neutral and alkaline (6.7≤ pH ≤ 9.20), permeable (1.9 í 10-5?m·s-1?≤ K ≤ 8.2 í 10-4?m·s-1), with a high specific yield (13.33% ≤ Sy ≤ 33.33%) which can favor the pollutants transfer. The heavy metals (Fe, Cu, Zn, Cd, Cr and Pb) have very high concentrations in soils. The integrated pollution indices (PLI) indicate that almost 70% of Songon soils are moderately contaminated by the investigated heavy metals, with windows presenting high indices of pollution related to the intensive use of fertilizers and pesticides. The establishment of new boreholes in the Songon area should consider these heavy metals, so as to avoid the risk of groundwater pollution due to the physical properties of soils. 展开更多
关键词 Songon soil Heavy Metals Pollution Indices groundwater Pollution Risk ABIDJAN
下载PDF
Impact of Surface Water and Groundwater Pollutions on Irrigated Soil, El Minia Province, Northern Upper Egypt
14
作者 Rafat Zaki Esam A. Ismail +1 位作者 Wagih S. Mohamed Ali Kamel Ali 《Journal of Water Resource and Protection》 2015年第17期1467-1472,共6页
Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni,... Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni, Se, Cd and Cr) in surface water, groundwater and irrigated soil samples is most significantly affected by leachate of many pollutants as the factories, agricultural activities, urban and natural processes. Microbiological parameters and microscopic investigations are revealed that some localities are common by micro-organisms, which are unsuitable for drinking waters. 展开更多
关键词 Heavy Metals Pollution Surface Water groundwater soils EL Minia PROVINCE North UPPER EGYPT
下载PDF
Effects of water and salt for groundwater-soil systems on root growth and architecture of Tamarix chinensis in the Yellow River Delta,China
15
作者 Jia Sun Ximei Zhao +3 位作者 Ying Fang Fanglei Gao Chunhong Wu Jiangbao Xia 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期441-452,共12页
To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch... To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system. 展开更多
关键词 groundwater SALINITY soil water and salt Root system Tamarix chinensis Topological structure
下载PDF
The Environmental Impacts of Kabd Landfill on the Soil and Groundwater in Kuwait: A Case Study
16
作者 Ahmed R. Al Rashed 《International Journal of Geosciences》 2018年第5期255-271,共17页
The environmental impacts of the Kabd Landfill on the soil and groundwater in Kuwait were evaluated. Physical and chemical analyses were carried out on thirty pairs of surface, subsurface soil and five groundwater sam... The environmental impacts of the Kabd Landfill on the soil and groundwater in Kuwait were evaluated. Physical and chemical analyses were carried out on thirty pairs of surface, subsurface soil and five groundwater samples. The groundwater samples are collected from boreholes nearby and downstream of the landfill while the soil samples collected along six profiles. The groundwater samples were geochemically analyzed to determine the total dissolved solids, cations, anions and heavy metals, particularly Iron (Fe), Copper (Cu), zinc (Zn), Cadmium (Cd), Nickel (Ni), Chromium (Cr) and Aluminum (Al), Lithium (Li), Boron (B), Fluoride (F) and Vanadium (V). The soil samples were geochemically analyzed to determine concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Iron (Fe), Aluminum (Al) and organics. The results show that the soil and groundwater are contaminated with high TDS, Na, Ca, Mg, Cl, SO4 and heavy metals, especially Ni, Cd, Cu, Al, V and F. The heavy metal concentrations in both the soil and groundwater samples are compared to the World Health Organization (WHO) standard permissible limits. The results revealed that the Zn, Li, B and Fe metals are below the WHO limits for consumption. The soil lithology, natures of dumping, the depth of quarry and the depth to the groundwater level play roles in leachate generation and groundwater contaminations. Such leachate may be originated from the capillary fringe water, moisture content and rising water table, due to its close level at the bottom of the waste disposal site. The organic strength of the soil was reduced due to waste decomposition and continuous gas flaring. Re-designing of sanitary landfills to prevent leachate from getting to the groundwater and adoption of clean technology for a sustainable land management program for reclamation is recommended. 展开更多
关键词 ENVIRONMENTAL IMPACTS LANDFILL KUWAIT soil groundwater
下载PDF
The Volatilization of Pollutants from Soil and Groundwater: Its Importance in Assessing Risk for Human Health for a Real Contaminated Site
17
作者 Pamela Morra Laura Leonardelli Gigliola Spadoni 《Journal of Environmental Protection》 2011年第9期1192-1206,共15页
Pollution of different elements (air, water, soil and subsoil) resulting both from accidental events and from ordinary industrial and civil activities causes negative effects on the human health and on the environment... Pollution of different elements (air, water, soil and subsoil) resulting both from accidental events and from ordinary industrial and civil activities causes negative effects on the human health and on the environment. The present paper examines the analysis of a contaminated site, focusing the attention on the negative effects for receptors exposed to soil and groundwater contamination caused by industrial activities. The case study investigated is a contaminated area located in the industrial district of Trento North once occupied by the Italian Carbochimica plant. Pollution in that area is mainly due to contamination of soil and groundwater with polycyclic aromatic hydrocarbons. The methodology applied is the risk evaluation for human health, in terms of individual cancer risk and hazard index. In particular the attention has been focused on a specific migration way: if pollutants in the soil or in the groundwater undergo a phase change, they spread and get to the soil surface, causing a dispersion of vapors in the atmosphere. In this case risk assessment calls for the evaluation of volatilization factor. Among the different models dealing with the estimation of volatilization factor, those mostly known and used in the national and international field of Human Health Risk Assessment were chosen: Jury’s and Farmer’s models. A sensitivity analysis of models was performed, in order to identify the most significant parameters to estimate the volatilization factors among the wide range of input parameters for the application of models. Performing an accurate selection and data processing of the contaminated site, models for the volatilization factors calculation are applied, thus evaluating air concentrations and Human Health Risk. The analysis of the resulting estimates is an excellent aid to draw interesting conclusions and to verify if the soil and groundwater pollutants volatilization affects the human health considerably. 展开更多
关键词 Human Health RISK Assessment VOLATILIZATION Models soil CONTAMINATION groundwater CONTAMINATION Cancer RISK Hazard Index
下载PDF
A Highly Sensitive and Selective Spectrofluorimetric Method for the Determination of Arsenic at Pico-Trace Levels in Some Groundwater, Real, Environmental, Biological, Food and Soil Samples Using 2-(<i>α</i>-Pyridyl)-Thioquinaldinamide
18
作者 M. Jamaluddin Ahmed Ayesha Afrin Mamunur Rashid 《American Journal of Analytical Chemistry》 2019年第8期316-347,共32页
A very simple, ultra-sensitive, highly selective and non-extractive new spectrofluorimetric method for the determination of arsenic at pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been develope... A very simple, ultra-sensitive, highly selective and non-extractive new spectrofluorimetric method for the determination of arsenic at pico-trace levels using 2-(α-pyridyl)-thioquinaldinamide (PTQA) has been developed. PTQA has been proposed as a new analytical reagent for the direct non-extractive spectrofluorimetric determination of Arsenic (V). This novel fluorimetric reagent, PTQA becomes oxidized in a slightly acidic (0.025 - 0.1 M H2SO4) solution with Arsenic (V) in absolute ethanol to produce highly fluorescent oxidized product (λex = 303 nm;λem = 365 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.025 - 0.1 M H2SO4) for the period between 2 min and 24 h. Linear calibration graphs were obtained for 0.001 - 800-μgL-1 of As, having a detection limit of 0.1-ngL-1;the quantification limit of the reaction system was found to be 1-ngL-1 and the RSD was 0% - 2%. A large excess of over 60 cations, anions and complexion agents (like, chloride, phosphate, azide, tartrate, oxalate, SCN, etc.) do not interfere in the determination. The developed method was successfully used in the determination of arsenic in several Certified Reference Materials (alloys, steels, ores, human urine, hair, nails, bovine liver and sediments) as well as in some biological fluids (human blood, urine, hair, nail and milk), soil samples, food samples (vegetables, fruits, rice, corn and wheat), solutions containing both arsenic (III) and arsenic (V) speciation and complex synthetic mixtures. The results of the proposed method for assessing biological, food and soil samples were comparable with both ICP-OES & AHG-AAS and were found to be in excellent agreement. 展开更多
关键词 Spectrofluorimetry ARSENIC Determination groundwater 2-(α-Pyridyl)-thioquinaldinamide ENVIRONMENTAL BIOLOGICAL soil FOOD Samples
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
19
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Soil Explorations and Groundwater Monitoring to Evaluate Subsurface Contamination Due to Chromium in District Kasur, Pakistan
20
作者 H. Rashid J. Takemura A.M. Farooqi 《Journal of Environmental Science and Engineering》 2011年第7期835-843,共9页
Due to improper tannery wastewater management in district Kasur Pakistan, groundwater has been reported to be highly contaminated. It was aimed to find out the extent up to which subsurface has contaminated due to chr... Due to improper tannery wastewater management in district Kasur Pakistan, groundwater has been reported to be highly contaminated. It was aimed to find out the extent up to which subsurface has contaminated due to chromium in areas adjacent to the tannery units. Eight (8) soil bores were conducted up to the depth of 30.5 meters and soil samples were tested for total and hexavalent chromium concentrations retained in soil by aqua regia digestion at the every depth of 1.5 meters. Afterwards monitoring wells were installed in these eight (8) bores so as to monitor chromium concentrations in the groundwater on monthly basis. The main source of contamination was considered to be the four (4) drains carrying tanneries effluent therefore samples were collected from these drains so as to observe seasonal variation in chromium concentration. 展开更多
关键词 groundwater and soil contamination soil boring monitoring wells CHROMIUM tannery wastewater.
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部