Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut...Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.展开更多
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ...Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.展开更多
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA...Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production.展开更多
Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field exper...Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field experiment was conducted to evaluate the effects of uncharred maize straw amendment(MS) and charred maize straw amendment(charred MS) on organic carbon(C) contents in bulk soil and in various soil aggregate-size and density fractions.Compared to no amendment(CK),the bulk soil organic C content significantly improved by 9.30% for MS and by 23.4% for charred MS.Uncharred and charred maize straw applied annually at a consistent equal-C dosage resulted in 19.7 and 58.2% organic C sequestration efficiency in soil,respectively,after the five years of the field experiment.The percentages of macroaggregates(>0.25 mm) and occluded microaggregates(0.25-0.053 mm) obviously increased by 7.73 and 18.1% for MS and by 10.7 and 19.6% for charred MS,respectively.Moreover,significant incremental increases of 19.4 and 35.0% in macroaggregate-associated organic C occurred in MS and charred MS,respectively.The occluded microaggregates associated organic C significantly increased by 21.7% for MS and 25.1% for charred MS.Mineral-associated organic C(<0.053 mm) inside the macroaggregates and the occluded microaggregates obviously improved by 24.7 and 33.3% for MS and by 18.4 and 44.9% for charred MS.Organic C associated with coarse particulate organic matter(POM) within the macroaggregates markedly increased by 65.1 and 41.2% for MS and charred MS,respectively.Charred MS resulted in a noteworthy increment of 50.4% for organic C associated with heavy POM inside the occluded microaggregates,whereas charred MS and MS observably improved organic C associated with heavy POM inside the free microaggregates by 36.3 and 20.0%,respectively.These results demonstrate that uncharred and charred maize straw amendments improve C sequestration by physically protecting more organic C in the macroaggregates and the occluded microaggregates.Compared to the feedstock straw amendment,charred maize straw amendment is more advantageous to C sequestration.展开更多
Afforestation has been implemented to reduce soil erosion and improve the environment of the Loess Plateau,China.Although it increased soil organic carbon(SOC),the stability of the increase is unknown.Additionally,t...Afforestation has been implemented to reduce soil erosion and improve the environment of the Loess Plateau,China.Although it increased soil organic carbon(SOC),the stability of the increase is unknown.Additionally,the variations of soil inorganic carbon(SIC) following afforestation needs to be reconfirmed.After planting Robinia pseudoacacia,Pinus tabuliformis,and Hippophae rhamnoides on bare land on the Loess Plateau,total soil carbon(TSC) was measured and its two components,SIC and SOC,as well as the light and heavy fractions within SOC under bare lands and woodlands at the soil surface(0–20 cm).The results show that TSC on bare land was 24.5 Mg ha^(-1) and significantly increased to 51.6 Mg ha^(-1) for R.pseudoacacia,47.0 Mg ha^(-1) for P.tabuliformis and 39.9 Mg ha^(-1) for H.rhamnoides.The accumulated total soil carbon under R.pseudoacacia,P.tabuliformis,and H.rhamnoides,the heavy fraction(HFSOC) accounted for 65.2,31.7 and 76.2%,respectively; the light fraction(LF-SOC) accounted for 18.0,52.0 and 4.0%,respectively; SIC occupied 15.6,15.3 and 19.7%,respectively.The accumulation rates of TSC under R.pseudoacacia,P.tabuliformis,and H.rhamnoides reached159.5,112.4 and 102.5 g m^(-2) a^(-1),respectively.The results demonstrate that afforestation on bare land has high potential for soil carbon accumulation on the Loess Plateau.Among the newly sequestrated total soil carbon,the heavy fraction(HF-SOC) with a slow turnover rate accounted for a considerably high percentage,suggesting that significant sequestrated carbon can be stored in soils following afforestation.Furthermore,afforestation induces SIC sequestration.Although its contribution to TSC accumulation was less than SOC,overlooking it may substantially underestimate the capacity of carbon sequestration after afforestation on the Loess Plateau.展开更多
Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions...Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.展开更多
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different...This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.展开更多
Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help...Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.展开更多
Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long...Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long-term C balance of terrestrial ecosystems. Different land use types can influence the distribution patterns of different SOC fractions. However, the underlying mechanisms are not well understood. In the present study, different fractions of SOC were determined in two land use types: a grazed grassland (established on previously cultivated cropland 25 years ago, GG) and a long-term cultivated millet cropland (MC). The results showed that C concentration and C storage of light fractions (LF) and heavy fractions (HF) presented different patterns along the soil profiles in the two sites. More plant residues in GG resulted in 91.9% higher LF storage at the 0-10 cm soil depth, further contributed to 21.9% higher SOC storage at this soil depth; SOC storage at 20-60 cm soil depth in MC was 98.8% higher than that in GG, which could be mainly attributed to the HF storage 104.5% higher than in GG. This might be caused by the long-term application of organic manure, as well as the protection from plough pan and silt- and clay-sized particles. The study indicated that different soil management practices in this region can greatly influence the variations of different SOC fractions, while the conventional tillage can greatly improve the storage of SOC by in- creasing heavy fractions.展开更多
Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the eff...Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China.Soil samples were collected from 0-10 cm and 10-20 cm depths after rice harvesting.The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment(NPKS2)than in the not fertilized control(CK)(P<0.05).The concentrations of labile C fractions[i.e.,water soluble organic C(WSOC),hot-water soluble organic C(HWSOC),microbial biomass C(MBC),and easily oxidizable C(EOC)],were higher in the moderate NPKS1 and NPKS2 treatments than in CK and the fertilized treatment without straw(NPK)(P<0.05).The geometric means of labile C(GMC)and C pool management index(CPMI)values were highest in NPKS2(P<0.05).The SOC concentrations correlated positively with the labile C fractions(P<0.05).Soil cellulase activity and the geometric mean of enzyme activities(GMea)were higher in NPKS2 than in CK in all soil layers(P<0.05),and the invertase activity was higher in NPKS2 than in CK in the 0-10 cm layer(P<0.05).Stepwise multiple linear regression indicated that the formation of the SOC,WSOC,HWSOC,MBC,and EOC was mostly enhanced by the cellulase and invertase activities(P<0.05).Therefore,the high rate of wheat straw incorporation may be recommended to increase soil C pool levels and soil fertility in subtropical paddy soils.展开更多
The Horqin Sandy Grassland is one of the most seriously desertified areas in China's agro-pastoral ecotone due to its fragile ecology, combined with improper and unsustainable land management. We investigated organic...The Horqin Sandy Grassland is one of the most seriously desertified areas in China's agro-pastoral ecotone due to its fragile ecology, combined with improper and unsustainable land management. We investigated organic carbon changes in bulk soil (0 to 5 cm), light fraction of soil organic matter, and soil particle-size fractions induced by land-use and cover type changes. The results indicated that total soil organic carbon (SOC) storage decreased by 121 g/m^2 with the conversion of grassland into farmland for 30 years, and increased by 261 g/m^2 with the conversion of grassland into plantation for 30 years. Total SOC storage decreased by 157 g/m^2 as a result of severe grassland desertification due to long-term continuous livestock grazing, whereas total SOC increased by 111 g/m^2 following the practice of grazing exclusion (16 years) in desertified areas. Changes in land-use and cover type also show great effects on carbon storage in soil physical fractions.展开更多
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon...Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon(SOC) fractions in forest ecosystems. This study had two aims:(1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and(2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains(SW Poland, Central Europe). The content of the most labile fraction of carbon(dissolved organic carbon,DOC) decreases with altitude, but the content of fulvic acids(FA), clearly increases in the zone above 1000 m asl, while the stabile fraction(humins, nonhydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests(Norway spruce), while a smaller-under deciduous forests(European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above1000 m asl may lead to a substantial increase in the stable humus fraction(mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization.In the lower zone(below 1000 m asl), a decrease in the most stable humus forms can be expected,accompanied by an increase of DOC contribution,which will result in a reduction in SOC pools. Overall,the expected prevailing(spatial) effect is a decreasing contribution of the most stable humus fractions,which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.展开更多
Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestr...Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestrial soils largely depends upon the magnitude of SOC mineralization. SOC mineralization constitutes an important part of the carbon cycle, and is driven by many biophysical variables, such as temperature and moisture.Methods: Soil samples of a pine forest, an oak forest, and a pine and oak mixed forest were incubated for 387 days under conditions with six temperature settings(5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C) and three levels of soil moisture content(SMC, 30%, 60%, 90%). The instantaneous rate of mineralized SOC was periodically and automatically measured using a Li-Cor CO2analyzer. Based on the measured amount of mineralized SOC,carbon fractions were estimated separately via first-order kinetic one-and two-compartment models.Results: During the 387 day incubation experiment, accumulative mineralized carbon ranged from 22.89 mg carbon(C) ·g-1SOC at 30 °C and 30% SMC for the mixed forest to 109.20 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest. Mineralized recalcitrant carbon varied from 18.48 mg C·g-1SOC at 30 °C and 30% SMC for the mixed forest to 104.98 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest, and contributed at least 80% to total mineralized carbon.Conclusions: Based on the results of this experiment, the soil organic matter of the pure broadleaved forest is more vulnerable to soil microbial degradation in northern China; most of the amount of the mineralized SOC derived from the recalcitrant carbon pool. Labile carbon fraction constitutes on average 0.4% of SOC across the three forest types and was rapidly digested by soil microbes in the early incubation stage. SOC mineralization markedly increased with soil moisture content, and correlated parabolically to temperature with the highest value at 15 °C. No significant interaction was detected among these variables in the present study.展开更多
Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est...Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.展开更多
China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a ...China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a widely suggested option to sequester C and to restore degraded land.In a desertified grassland,we investigated the C accumulation in the total and light fractions of the soil organic matter from 2005 to 2013 during natural restoration.To a depth of 20 cm,the light fraction organic carbon(LFOC) storage increased by 221 g C/m2(84%) and the total soil organic carbon(SOC) storage increased by 435 g C/m2(55%).The light fraction dry matter content represented a small proportion of the total soil mass(ranging from 0.74% in 2005 to 1.39% in 2013),but the proportion of total SOC storage accounted for by LFOC was remarkable(ranging from 33% to 40%).The C sequestration averaged 28 g C/(m2·a) for LFOC and 54 g C/(m2·a) for total SOC.The total SOC was strongly and significantly positively linearly related to the light fraction dry matter content and the proportions of fine sand and silt+clay.The light fraction organic matter played a major role in total SOC sequestration.Our results suggest that grazing exclusion can restore desertified grassland and has a high potential for sequestering SOC in the semiarid Horqin Sandy Land.展开更多
The oxidizability of soil organic carbon (SOC) influences soil quality and carbon sequestration. Four fractions of oxidizable organic carbon (very labile (C1), labile (C2), less labile (C3) and non-labile (C...The oxidizability of soil organic carbon (SOC) influences soil quality and carbon sequestration. Four fractions of oxidizable organic carbon (very labile (C1), labile (C2), less labile (C3) and non-labile (C4)) reflect the status and composition of SOC and have implications for the change and retention of SOC. Studies of the fractions of oxidizable organic carbon (OC) have been limited to shallow soil depths and agroecosystems. How these fractions respond at deep soil depths and in other types of land-use is not clear. In this study, we evaluated the vertical distributions of the fractions of oxidizable organic carbon to a soil depth of 5.0 m in 10 land-use types in the Zhifanggou Watershed on the Loess Plateau, China. Along the soil profile, C1 contents were highly variable in the natural grassland and shrubland I (Caragana microphylla), C2 and C4 contents were highly variable in the natural grassland and two terraced croplands, respectively, and C3 contents varied little. Among the land-use types, natural grassland had the highest C1 and C2 contents in the 0-0.4 m layers, followed by shrubland I in the 0-0.1 m layer. Natural grassland had the highest C4 contents in the 1.0-4.5 m layers. Natural grassland and shrubland I thus contributed to improve the oxidizability of SOC in shallow soil, and the deep soil of natural grassland has a large potential to sequester SOC on the Loess Plateau.展开更多
Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China we...Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.展开更多
The effects of long-term fertilization on pools of soil organic carbon (SOC) have been well studied, but limited information is available on the oxidizable organic carbon (OOC) fractions, especially for the Loess ...The effects of long-term fertilization on pools of soil organic carbon (SOC) have been well studied, but limited information is available on the oxidizable organic carbon (OOC) fractions, especially for the Loess Plateau in China. We evaluated the effects of a 15-year fertilization on the OOC fractions (F1, F2, F3 and F4) in the 0-20 and 20-40 cm soil layers in flat farmland under nine treatments (N (nitrogen, urea), P (phosphorus, monocalcium phosphate), M (organic fertilizer, composted sheep manure), N+P (NP), M+N (MN), M+P (MP), M+N+P (MNP), CK (control, no fertilizer) and bare land (BL, no crops or fertilizer)). SOC content increased more markedly in the treatment containing manure than in those with inorganic fertilizers alone. F1, F2, F4 and F3 accounted for 47%, 27%, 18% and 8% of total organic carbon, respectively. F1 was a more sensitive index than the other C fractions in the sensitivity index (SI) analysis. F1 and F2 were highly correlated with total nitrogen (TN) and available nitrogen (AN), F3 was negatively correlated with pH and F4 was correlated with TN. A cluster analysis showed that the treatments containing manure formed one group, and the other treatments formed another group, which indicated the different effects of fertilization on soil properties. Long-term fertilization with inorganic fertilizer increased the F4 fraction while manure fertilizer not only increased labile fractions (F1) in a short time, but also increased passive fraction (F4) over a longer term. The mixed fertilizer mainly affected F3 fraction. The study demonstrated that manure fertilizer was recommended to use in the farmland on the Loess Plateau for the long-term sustainability of agriculture.展开更多
Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the s...Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon(SOC), total nitrogen(TN), microbial biomass carbon(MBC), microbial biomass nitrogen(MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site(3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon(SMBC) and soil microbial biomass nitrogen(SMBN)were positively correlated with SOC. The content of easily oxidized carbon(EOC), particulate organic carbon(POC) and light fraction organic carbon(LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth.The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents weredifferent with the changes of SOC(p&lt;0.05),meanwhile, both LFOC and POC were related to total SOC(p&lt;0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude,were involved in the regulation of SOC, TN, MBC,MBN and LFOC contents in the Sygera Mountains,Tibetan Plateau.展开更多
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U22A20609)the National Key Research and Development Program of China(2021YFD1901102-4)+2 种基金the State Key Laboratory of Integrative Sustainable Dryland Agriculture(in preparation)the Shanxi Agricultural University,China(202003-3)the Open Fund from the State Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,China(2020002)。
文摘Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.
文摘Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.
基金the National Natural Science Foundation of China(42077022)Key Research and Development Program of Jilin Province(20200402098NC).
文摘Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production.
基金supported by the National Key Research and Development Program of China(2017YFD0200801 and 2017YFD0300602)the National Natural Science Foundation of China(41471196)+1 种基金the Science and Technology Development Project of Jilin Province,China(20170101162JC)the Science and Technology Project of the Education Department of Jilin Province,China(JJKH20170313KJ)
文摘Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field experiment was conducted to evaluate the effects of uncharred maize straw amendment(MS) and charred maize straw amendment(charred MS) on organic carbon(C) contents in bulk soil and in various soil aggregate-size and density fractions.Compared to no amendment(CK),the bulk soil organic C content significantly improved by 9.30% for MS and by 23.4% for charred MS.Uncharred and charred maize straw applied annually at a consistent equal-C dosage resulted in 19.7 and 58.2% organic C sequestration efficiency in soil,respectively,after the five years of the field experiment.The percentages of macroaggregates(>0.25 mm) and occluded microaggregates(0.25-0.053 mm) obviously increased by 7.73 and 18.1% for MS and by 10.7 and 19.6% for charred MS,respectively.Moreover,significant incremental increases of 19.4 and 35.0% in macroaggregate-associated organic C occurred in MS and charred MS,respectively.The occluded microaggregates associated organic C significantly increased by 21.7% for MS and 25.1% for charred MS.Mineral-associated organic C(<0.053 mm) inside the macroaggregates and the occluded microaggregates obviously improved by 24.7 and 33.3% for MS and by 18.4 and 44.9% for charred MS.Organic C associated with coarse particulate organic matter(POM) within the macroaggregates markedly increased by 65.1 and 41.2% for MS and charred MS,respectively.Charred MS resulted in a noteworthy increment of 50.4% for organic C associated with heavy POM inside the occluded microaggregates,whereas charred MS and MS observably improved organic C associated with heavy POM inside the free microaggregates by 36.3 and 20.0%,respectively.These results demonstrate that uncharred and charred maize straw amendments improve C sequestration by physically protecting more organic C in the macroaggregates and the occluded microaggregates.Compared to the feedstock straw amendment,charred maize straw amendment is more advantageous to C sequestration.
基金supported by,the twelfth Five-Year Plan of National Science and Technology in China(2012BAD22B0302)
文摘Afforestation has been implemented to reduce soil erosion and improve the environment of the Loess Plateau,China.Although it increased soil organic carbon(SOC),the stability of the increase is unknown.Additionally,the variations of soil inorganic carbon(SIC) following afforestation needs to be reconfirmed.After planting Robinia pseudoacacia,Pinus tabuliformis,and Hippophae rhamnoides on bare land on the Loess Plateau,total soil carbon(TSC) was measured and its two components,SIC and SOC,as well as the light and heavy fractions within SOC under bare lands and woodlands at the soil surface(0–20 cm).The results show that TSC on bare land was 24.5 Mg ha^(-1) and significantly increased to 51.6 Mg ha^(-1) for R.pseudoacacia,47.0 Mg ha^(-1) for P.tabuliformis and 39.9 Mg ha^(-1) for H.rhamnoides.The accumulated total soil carbon under R.pseudoacacia,P.tabuliformis,and H.rhamnoides,the heavy fraction(HFSOC) accounted for 65.2,31.7 and 76.2%,respectively; the light fraction(LF-SOC) accounted for 18.0,52.0 and 4.0%,respectively; SIC occupied 15.6,15.3 and 19.7%,respectively.The accumulation rates of TSC under R.pseudoacacia,P.tabuliformis,and H.rhamnoides reached159.5,112.4 and 102.5 g m^(-2) a^(-1),respectively.The results demonstrate that afforestation on bare land has high potential for soil carbon accumulation on the Loess Plateau.Among the newly sequestrated total soil carbon,the heavy fraction(HF-SOC) with a slow turnover rate accounted for a considerably high percentage,suggesting that significant sequestrated carbon can be stored in soils following afforestation.Furthermore,afforestation induces SIC sequestration.Although its contribution to TSC accumulation was less than SOC,overlooking it may substantially underestimate the capacity of carbon sequestration after afforestation on the Loess Plateau.
基金funded by the National Natural Science Foundation of China (31640012, 41271007, 31660232)the One Hundred Person Project of the Chinese Academy of Sciences (Y551821)+1 种基金the Opening Foundation of the State Key Laboratory Breeding Base of DesertificationAeolian Sand Disaster Combating, Gansu Desert Control Research Institute (GSDC201505)
文摘Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.
文摘This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.
基金supported by the National Natural Science Foundation of China(Grant No.31470623)the National Basic Research Program of China(Grant No.2011CB403205)
文摘Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.
基金supported by National Basic Research Program of China (2014CB138703)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050403)+3 种基金Changjiang Scholars and Innovative Research Team in University (IRT13019)Key Science and Technology Projects of Gansu Province (1203FKDA035)Fundamental Research Funds for the Central Universities (lzujbky-2014-78)the National Natural Science Foundation of China (31070412, 31201837)
文摘Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long-term C balance of terrestrial ecosystems. Different land use types can influence the distribution patterns of different SOC fractions. However, the underlying mechanisms are not well understood. In the present study, different fractions of SOC were determined in two land use types: a grazed grassland (established on previously cultivated cropland 25 years ago, GG) and a long-term cultivated millet cropland (MC). The results showed that C concentration and C storage of light fractions (LF) and heavy fractions (HF) presented different patterns along the soil profiles in the two sites. More plant residues in GG resulted in 91.9% higher LF storage at the 0-10 cm soil depth, further contributed to 21.9% higher SOC storage at this soil depth; SOC storage at 20-60 cm soil depth in MC was 98.8% higher than that in GG, which could be mainly attributed to the HF storage 104.5% higher than in GG. This might be caused by the long-term application of organic manure, as well as the protection from plough pan and silt- and clay-sized particles. The study indicated that different soil management practices in this region can greatly influence the variations of different SOC fractions, while the conventional tillage can greatly improve the storage of SOC by in- creasing heavy fractions.
基金This work was funded by the Shanghai Agriculture Applied Technology Development Program,China(Grant No.G20190308)the National Key Research and Development Program of China(2016YFD0801106).
文摘Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China.Soil samples were collected from 0-10 cm and 10-20 cm depths after rice harvesting.The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment(NPKS2)than in the not fertilized control(CK)(P<0.05).The concentrations of labile C fractions[i.e.,water soluble organic C(WSOC),hot-water soluble organic C(HWSOC),microbial biomass C(MBC),and easily oxidizable C(EOC)],were higher in the moderate NPKS1 and NPKS2 treatments than in CK and the fertilized treatment without straw(NPK)(P<0.05).The geometric means of labile C(GMC)and C pool management index(CPMI)values were highest in NPKS2(P<0.05).The SOC concentrations correlated positively with the labile C fractions(P<0.05).Soil cellulase activity and the geometric mean of enzyme activities(GMea)were higher in NPKS2 than in CK in all soil layers(P<0.05),and the invertase activity was higher in NPKS2 than in CK in the 0-10 cm layer(P<0.05).Stepwise multiple linear regression indicated that the formation of the SOC,WSOC,HWSOC,MBC,and EOC was mostly enhanced by the cellulase and invertase activities(P<0.05).Therefore,the high rate of wheat straw incorporation may be recommended to increase soil C pool levels and soil fertility in subtropical paddy soils.
基金supported by the National Natural Science Foundation of China (41271007 and 31170413)the National Science and Technology Support Program of China (2011BAC07B02)One Hundred Person Project of the Chinese Academy of Sciences
文摘The Horqin Sandy Grassland is one of the most seriously desertified areas in China's agro-pastoral ecotone due to its fragile ecology, combined with improper and unsustainable land management. We investigated organic carbon changes in bulk soil (0 to 5 cm), light fraction of soil organic matter, and soil particle-size fractions induced by land-use and cover type changes. The results indicated that total soil organic carbon (SOC) storage decreased by 121 g/m^2 with the conversion of grassland into farmland for 30 years, and increased by 261 g/m^2 with the conversion of grassland into plantation for 30 years. Total SOC storage decreased by 157 g/m^2 as a result of severe grassland desertification due to long-term continuous livestock grazing, whereas total SOC increased by 111 g/m^2 following the practice of grazing exclusion (16 years) in desertified areas. Changes in land-use and cover type also show great effects on carbon storage in soil physical fractions.
基金financially supported by the National Science Centre as research grant No2013/11/N/ST10/01528
文摘Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon(SOC) fractions in forest ecosystems. This study had two aims:(1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and(2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains(SW Poland, Central Europe). The content of the most labile fraction of carbon(dissolved organic carbon,DOC) decreases with altitude, but the content of fulvic acids(FA), clearly increases in the zone above 1000 m asl, while the stabile fraction(humins, nonhydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests(Norway spruce), while a smaller-under deciduous forests(European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above1000 m asl may lead to a substantial increase in the stable humus fraction(mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization.In the lower zone(below 1000 m asl), a decrease in the most stable humus forms can be expected,accompanied by an increase of DOC contribution,which will result in a reduction in SOC pools. Overall,the expected prevailing(spatial) effect is a decreasing contribution of the most stable humus fractions,which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant No.YX2014-10)the Normal Sustainability Fund for the Taiyueshan Long-Term Forest Ecology Research Station(2017-LYPT-DW-148)
文摘Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestrial soils largely depends upon the magnitude of SOC mineralization. SOC mineralization constitutes an important part of the carbon cycle, and is driven by many biophysical variables, such as temperature and moisture.Methods: Soil samples of a pine forest, an oak forest, and a pine and oak mixed forest were incubated for 387 days under conditions with six temperature settings(5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C) and three levels of soil moisture content(SMC, 30%, 60%, 90%). The instantaneous rate of mineralized SOC was periodically and automatically measured using a Li-Cor CO2analyzer. Based on the measured amount of mineralized SOC,carbon fractions were estimated separately via first-order kinetic one-and two-compartment models.Results: During the 387 day incubation experiment, accumulative mineralized carbon ranged from 22.89 mg carbon(C) ·g-1SOC at 30 °C and 30% SMC for the mixed forest to 109.20 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest. Mineralized recalcitrant carbon varied from 18.48 mg C·g-1SOC at 30 °C and 30% SMC for the mixed forest to 104.98 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest, and contributed at least 80% to total mineralized carbon.Conclusions: Based on the results of this experiment, the soil organic matter of the pure broadleaved forest is more vulnerable to soil microbial degradation in northern China; most of the amount of the mineralized SOC derived from the recalcitrant carbon pool. Labile carbon fraction constitutes on average 0.4% of SOC across the three forest types and was rapidly digested by soil microbes in the early incubation stage. SOC mineralization markedly increased with soil moisture content, and correlated parabolically to temperature with the highest value at 15 °C. No significant interaction was detected among these variables in the present study.
文摘Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.
基金supported by the National Natural Science Foundation of China (41271007,31170413)the National Science and Technology Support Program of China (2011BAC07B02)
文摘China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a widely suggested option to sequester C and to restore degraded land.In a desertified grassland,we investigated the C accumulation in the total and light fractions of the soil organic matter from 2005 to 2013 during natural restoration.To a depth of 20 cm,the light fraction organic carbon(LFOC) storage increased by 221 g C/m2(84%) and the total soil organic carbon(SOC) storage increased by 435 g C/m2(55%).The light fraction dry matter content represented a small proportion of the total soil mass(ranging from 0.74% in 2005 to 1.39% in 2013),but the proportion of total SOC storage accounted for by LFOC was remarkable(ranging from 33% to 40%).The C sequestration averaged 28 g C/(m2·a) for LFOC and 54 g C/(m2·a) for total SOC.The total SOC was strongly and significantly positively linearly related to the light fraction dry matter content and the proportions of fine sand and silt+clay.The light fraction organic matter played a major role in total SOC sequestration.Our results suggest that grazing exclusion can restore desertified grassland and has a high potential for sequestering SOC in the semiarid Horqin Sandy Land.
基金supported by the National Natural Science Foundation of China(41371510)the Fundamental Research Funds for the Central Universities+1 种基金China(ZD2013021)the Science and Technology Research and Development Program of Shaanxi Province(2011KJXX63)
文摘The oxidizability of soil organic carbon (SOC) influences soil quality and carbon sequestration. Four fractions of oxidizable organic carbon (very labile (C1), labile (C2), less labile (C3) and non-labile (C4)) reflect the status and composition of SOC and have implications for the change and retention of SOC. Studies of the fractions of oxidizable organic carbon (OC) have been limited to shallow soil depths and agroecosystems. How these fractions respond at deep soil depths and in other types of land-use is not clear. In this study, we evaluated the vertical distributions of the fractions of oxidizable organic carbon to a soil depth of 5.0 m in 10 land-use types in the Zhifanggou Watershed on the Loess Plateau, China. Along the soil profile, C1 contents were highly variable in the natural grassland and shrubland I (Caragana microphylla), C2 and C4 contents were highly variable in the natural grassland and two terraced croplands, respectively, and C3 contents varied little. Among the land-use types, natural grassland had the highest C1 and C2 contents in the 0-0.4 m layers, followed by shrubland I in the 0-0.1 m layer. Natural grassland had the highest C4 contents in the 1.0-4.5 m layers. Natural grassland and shrubland I thus contributed to improve the oxidizability of SOC in shallow soil, and the deep soil of natural grassland has a large potential to sequester SOC on the Loess Plateau.
基金Under the auspices of National Natural Science Foundation of China(No.41501102,41471081,41601104)Science and Technology Innovation Project of China Academy of Agricultural Sciences(No.2017-cxgc-lyj)Science&Technology Project of Industry(No.201403014)
文摘Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.
基金supported by the National Natural Science Foundation of China (41371510,41371508,41471438)the Science and Technology Research and Development Plan of Shaanxi Province (2011KJXX36)
文摘The effects of long-term fertilization on pools of soil organic carbon (SOC) have been well studied, but limited information is available on the oxidizable organic carbon (OOC) fractions, especially for the Loess Plateau in China. We evaluated the effects of a 15-year fertilization on the OOC fractions (F1, F2, F3 and F4) in the 0-20 and 20-40 cm soil layers in flat farmland under nine treatments (N (nitrogen, urea), P (phosphorus, monocalcium phosphate), M (organic fertilizer, composted sheep manure), N+P (NP), M+N (MN), M+P (MP), M+N+P (MNP), CK (control, no fertilizer) and bare land (BL, no crops or fertilizer)). SOC content increased more markedly in the treatment containing manure than in those with inorganic fertilizers alone. F1, F2, F4 and F3 accounted for 47%, 27%, 18% and 8% of total organic carbon, respectively. F1 was a more sensitive index than the other C fractions in the sensitivity index (SI) analysis. F1 and F2 were highly correlated with total nitrogen (TN) and available nitrogen (AN), F3 was negatively correlated with pH and F4 was correlated with TN. A cluster analysis showed that the treatments containing manure formed one group, and the other treatments formed another group, which indicated the different effects of fertilization on soil properties. Long-term fertilization with inorganic fertilizer increased the F4 fraction while manure fertilizer not only increased labile fractions (F1) in a short time, but also increased passive fraction (F4) over a longer term. The mixed fertilizer mainly affected F3 fraction. The study demonstrated that manure fertilizer was recommended to use in the farmland on the Loess Plateau for the long-term sustainability of agriculture.
基金supported by CFERN & GENE Award Funds on Ecological Paper
文摘Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon(SOC), total nitrogen(TN), microbial biomass carbon(MBC), microbial biomass nitrogen(MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site(3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon(SMBC) and soil microbial biomass nitrogen(SMBN)were positively correlated with SOC. The content of easily oxidized carbon(EOC), particulate organic carbon(POC) and light fraction organic carbon(LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth.The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents weredifferent with the changes of SOC(p&lt;0.05),meanwhile, both LFOC and POC were related to total SOC(p&lt;0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude,were involved in the regulation of SOC, TN, MBC,MBN and LFOC contents in the Sygera Mountains,Tibetan Plateau.