It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmo...It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmospheric CO<sub>2</sub> concentration. However, the stability and flux of soil organic carbon are affected in response to changes that are being driven by forms of environmental and anthropogenic factors. Therefore, to establish carbon sequestration potential of soils, an in-depth scientific evaluation that would provide mapping of and speciation of carbon chemical forms, as well as factors influencing the persistence of carbon in soils are key to the process which are beyond quantitative measurements that are conventionally implemented under different land use and/or soil management. This involves soil chemistry, physics, biology, and microbiology. Hence, this short review communication highlights portions of soil chemistry and physics as well as soil biology and microbiology that have not been given attention in determining and/or underpinning decisions on carbon sequestration potential of soils.展开更多
The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on...The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.展开更多
Land cover type is critical for soil organic carbon (SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distri...Land cover type is critical for soil organic carbon (SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages (cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0-20 cm and 20-50 cm soil layers increased significantly. SOC density (SOCD) within O-lOO cm soil depth ranged from 1.45 to 8.72 kg m^-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on 8OC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.展开更多
Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective managemen...Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development.展开更多
Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that lan...Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that land-use changes can significantly influence the se- questration of SOC. However, the SOC sequestration potential (SOCP, the difference between the saturation and the existing content of SOC) caused by land-use change, and the effects of land-use optimization on the SOCP are still not well understood. In this research, we modeled the effects of land-use optimization on SOCP in Beijing. We simulated three land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial restriction scenario) and assessed their effects on SOCP. The total SOCP (0-20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would de- crease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems.展开更多
Based on soil under seven vegetation types,the carbon sequestration potential in the Ebinur Lake wetland was estimated using the maximum value method,the saturation value method,and the classification and grading meth...Based on soil under seven vegetation types,the carbon sequestration potential in the Ebinur Lake wetland was estimated using the maximum value method,the saturation value method,and the classification and grading method.Results indicated that:1)Soil carbon sequestration results for the top 20 cm soil layer were about 1.88 Mt using the maximum value method;the middle level standard of the classification and grading method result was 1.71 Mt.2)Soil carbon sequestration potential in the top 20 cm layer under different vegetation types,evaluated using the saturation value method and the classificationgrading method,ranged from 0.45 to 0.67 Mt,accounting for about 5/16 of the ideal carbon sequestration potential.3)Carbon sequestration potential calculated using the saturation method and the classification method(middle level standard),combining the soil organic carbon increment under different vegetation types in Ebinur Lake wetland,recorded an average growth rate of soil organic carbon around 0.7-1 kg/(hm^2·a).Time required to reach its carbon sequestration potential was 41 to 144 a.These results indicate that soil organic carbon content dynamically changes,and different forms of land use affect soil organic carbon content.The potential and ability of soil carbon sequestration and its mechanism of dynamic change are investigated,providing a scientific basis for understanding regional carbon cycle and climate change in wetlands.展开更多
Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an impor...Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas.展开更多
Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-...Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-dimensional scale,especially lacking of field measured data.We employed the interpolation method with gradient plane nodal function(GPNF)and Shepard(SPD)across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR)of China.The SOCP was estimated using a carbon saturation model.Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×106 and 25,respectively.The soil organic carbon storage(SOCS)of 40 cm and 20 cm soil layers were estimated as 22.28×10^(11)kg and 13.12×10^(11)kg simulated by GPNF method in DFR.The SOCP was estimated as 0.95×10^(11)kg considered as a carbon sink at the 20–40 cm soil layer.Furthermore,the SOCP was estimated as–2.49×10^(11)kg considered as a carbon source at the 0–20 cm soil layer.This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions.展开更多
文摘It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmospheric CO<sub>2</sub> concentration. However, the stability and flux of soil organic carbon are affected in response to changes that are being driven by forms of environmental and anthropogenic factors. Therefore, to establish carbon sequestration potential of soils, an in-depth scientific evaluation that would provide mapping of and speciation of carbon chemical forms, as well as factors influencing the persistence of carbon in soils are key to the process which are beyond quantitative measurements that are conventionally implemented under different land use and/or soil management. This involves soil chemistry, physics, biology, and microbiology. Hence, this short review communication highlights portions of soil chemistry and physics as well as soil biology and microbiology that have not been given attention in determining and/or underpinning decisions on carbon sequestration potential of soils.
基金Supported by Science and Technology Program of Fujian Province(2017R1016-4)Natural Science Foundation of Fujian Province(2017J01072)
文摘The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05070403)the National Natural Science Foundation of China (Grant Nos. 41171246, 41301273)the National Science-technology Support Plan Projects (Grant No. 2012BAD05B03-6)
文摘Land cover type is critical for soil organic carbon (SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages (cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0-20 cm and 20-50 cm soil layers increased significantly. SOC density (SOCD) within O-lOO cm soil depth ranged from 1.45 to 8.72 kg m^-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on 8OC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.
基金funded by the National Technology & Science Support Program of China (2012BAD16B02)
文摘Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development.
基金Key Research Program of Beijing Natural Science Foundation,No.8151001
文摘Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that land-use changes can significantly influence the se- questration of SOC. However, the SOC sequestration potential (SOCP, the difference between the saturation and the existing content of SOC) caused by land-use change, and the effects of land-use optimization on the SOCP are still not well understood. In this research, we modeled the effects of land-use optimization on SOCP in Beijing. We simulated three land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial restriction scenario) and assessed their effects on SOCP. The total SOCP (0-20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would de- crease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems.
基金This work was supported by the Key Laboratory Opening Project of Xinjiang Uygur Autonomous Region,China(Grant No.2016D03007)the Key Subject Project of the 13th Five-year Plan of Xinjiang Normal University(Grant No.17SDKD0708)the National Natural Science Foundation of China(Grant No.41761113).
文摘Based on soil under seven vegetation types,the carbon sequestration potential in the Ebinur Lake wetland was estimated using the maximum value method,the saturation value method,and the classification and grading method.Results indicated that:1)Soil carbon sequestration results for the top 20 cm soil layer were about 1.88 Mt using the maximum value method;the middle level standard of the classification and grading method result was 1.71 Mt.2)Soil carbon sequestration potential in the top 20 cm layer under different vegetation types,evaluated using the saturation value method and the classificationgrading method,ranged from 0.45 to 0.67 Mt,accounting for about 5/16 of the ideal carbon sequestration potential.3)Carbon sequestration potential calculated using the saturation method and the classification method(middle level standard),combining the soil organic carbon increment under different vegetation types in Ebinur Lake wetland,recorded an average growth rate of soil organic carbon around 0.7-1 kg/(hm^2·a).Time required to reach its carbon sequestration potential was 41 to 144 a.These results indicate that soil organic carbon content dynamically changes,and different forms of land use affect soil organic carbon content.The potential and ability of soil carbon sequestration and its mechanism of dynamic change are investigated,providing a scientific basis for understanding regional carbon cycle and climate change in wetlands.
基金supported by the National Natural Science Foundation of China(31660232,41061030)the Carbon Benefits Project(G-4280-3)+1 种基金the Global Environmental Facility(GEF)Co-financed Project,the Foundation for Innovative Research Groups of Gansu Province(145RJIA335)the National Science and Technology Program for People's Livelihood(2013GS620202)
文摘Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas.
基金Youth Innovation Promotion Association CAS,No.2021119Future Star Talent Program of Aerospace Information Research Institute,Chinese Academy of Sciences,No.2020KTYWLZX08National Special Support Program for High-level Personnel Recruitment。
文摘Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-dimensional scale,especially lacking of field measured data.We employed the interpolation method with gradient plane nodal function(GPNF)and Shepard(SPD)across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR)of China.The SOCP was estimated using a carbon saturation model.Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×106 and 25,respectively.The soil organic carbon storage(SOCS)of 40 cm and 20 cm soil layers were estimated as 22.28×10^(11)kg and 13.12×10^(11)kg simulated by GPNF method in DFR.The SOCP was estimated as 0.95×10^(11)kg considered as a carbon sink at the 20–40 cm soil layer.Furthermore,the SOCP was estimated as–2.49×10^(11)kg considered as a carbon source at the 0–20 cm soil layer.This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions.