期刊文献+
共找到1,995篇文章
< 1 2 100 >
每页显示 20 50 100
Impact of wetting-drying cycles and acidic conditions on the soil aggregate stability of yellow‒brown soil
1
作者 XIA Zhenyao NI Yuanzhen +2 位作者 LIU Deyu WANG Di XIAO Hai 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2075-2090,共16页
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c... Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA. 展开更多
关键词 Yellow‒brown soil Wetting-drying cycles Acidic conditions soil aggregate stability soil disintegration
下载PDF
Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region 被引量:10
2
作者 宋耀明 郭维栋 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期319-326,共8页
The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmos... The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models. 展开更多
关键词 semi-arid region soil moisture latent/sensible heat flux diurnal cycle seasonal evolution
下载PDF
Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles 被引量:6
3
作者 Congyan Wang Hongguang Xiao +2 位作者 Jun Liu Lei Wang Daolin Du 《American Journal of Plant Sciences》 2015年第1期34-46,共13页
The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numero... The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numerous studies have revealed that one of the main factors for successful plant invasion is that plants could pose significant effects on soil N cycles via direct and/or indirect ways, such as changes in soil microbial communities, litter decomposition rates, and/or soil physicochemical properties. We thereby summarize the ecological effects of invasive plants on soil N cycles, including the aforementioned changes, to understand the mechanism of successful invasion. We also discuss the needs for further research on the relationship between invasive plants and soil N cycles. 展开更多
关键词 INVASIVENESS INVASIVE Plants LITTER Decomposition soil N cycles soil MICROBIAL Community
下载PDF
Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles 被引量:7
4
作者 Yinlei Sun Qixin Liu +2 位作者 Hansheng Xu Yuxi Wang Liansheng Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期831-845,共15页
The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of grani... The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of granite residual soil in certain areas. Research on the mechanical properties and controlling mechanisms of disintegration has become a hot issue in practical engineering. In this paper, the disintegration characteristics of improved granite residual soil are studied by using a wet and dry cycle disintegration instrument, and the improvement mechanism is analyzed. The results show that the disintegration amounts and disintegration ratios of soil samples treated with different curing agents are obviously different. The disintegration process of improved granite residual soil can be roughly divided into 5 stages:the forcible water intrusion stage, microcrack and fissure development stage, curing and strengthening stage, stable stage, and sudden disintegration stage. The disintegration of granite residual soil is caused by the weakening of the cementation between soil particles under the action of water. When the disintegration force is greater than the anti-disintegration force of soil, the soil will disintegrate. Cement and lime mainly rely on ion exchange agglomeration, the inclusion effect of curing agents on soil particles, the hard coagulation reaction and carbonation to strengthen granite residual soil. Kaolinite mainly depends on the reversibility of its own cementation to improve and strengthen granite residual soil. The reversibility of kaolinite cementation is verified by investigating pure kaolinite with a tensile, soaking, drying and tensile test cycle. Research on the disintegration characteristics and disintegration mechanism of improved granite residual soil is of certain reference value for soil modification. 展开更多
关键词 Granite residual soil DISINTEGRATION Wet and dry cycle MECHANISM Improved soil
下载PDF
Cracking in an expansive soil under freeze–thaw cycles 被引量:4
5
作者 Yang Lu SiHong Liu 《Research in Cold and Arid Regions》 CSCD 2017年第4期392-397,共6页
Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing. Cracking can also occur in expansive clayey soils under freeze–thaw cycles, of which little attentio... Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing. Cracking can also occur in expansive clayey soils under freeze–thaw cycles, of which little attention has been paid on this issue.In this study, laboratory experiment and cracking analysis were performed on an expansive soil. Crack patterns were quantitatively analyzed using the fractal concept. The relationships among crack pattern, water loss, number of freeze–thaw cycles, and fractal dimension were discussed. It was found that crack patterns on the surface exhibit a hierarchical network structure that is fractal at a statistical level. Cracks induced by freeze–thaw cycles are shorter, more irregularly oriented,and slowly evolves from an irregularly rectilinear pattern towards a polygonal or quasi–hexagonal one; water loss, closely related to specimen thickness, plays a significant role in the process of soil cracking; crack development under freeze-thaw cycles are not only attributed to capillary effect, but also to expansion and absorption effects. 展开更多
关键词 expansive soilS cracks freeze–thaw cycles fractals CAPILLARY EXPANSION ABSORPTION
下载PDF
Effects of freeze–thaw cycles on soil N_2O concentration and flux in the permafrost regions of the Qinghai–Tibetan Plateau 被引量:4
6
作者 ShengYun Chen Qian Zhao +6 位作者 WenJie Liu Zhao Zhang Shuo Li HongLin Li ZhongNan Nie LingXi Zhou ShiChang Kang 《Research in Cold and Arid Regions》 CSCD 2018年第1期69-79,共11页
Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there ... Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there is a lack of in situ research on the characteristics of soil N_2 O concentration and flux in response to variations in soil properties caused by FTCs.Here, we report the effect of FTC-induced changes in soil properties on the soil N_2 O concentration and flux in the permafrost region of the higher reaches of the Shule River Basin on the northeastern margin of the QTP. We measured chemical properties of the topsoil, activities of soil microorganisms, and air temperature(AT), as well as soil N_2 O concentration and flux, over an annual cycle from July 31, 2011, to July 30, 2012. The results showed that soil N_2 O concentration was significantly affected by soil temperature(ST), soil moisture(SM), soil salinity(SS), soil polyphenol oxidase(SPO), soil alkaline phosphatase(SAP), and soil culturable actinomycetes(SCA), ranked as SM>SS>ST>SPO>SAP>SCA, whereas ST significantly increased soil N_2 O flux, compared with SS. Overall, our study indicated that the soil N_2 O concentration and flux in permafrost zone FTCs were strongly affected by soil properties, especially soil moisture, soil salinity, and soil temperature. 展开更多
关键词 FREEZE-THAW cycles soil environment N2O
下载PDF
Nutrient Cycling and Balance in Red Soil Agroecosystem and Their Management 被引量:8
7
作者 HE YUANQIU and LI ZHIMING.(Institute of Soil Science, the Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008 China) 《Pedosphere》 SCIE CAS CSCD 2000年第2期107-116,共10页
An experiment was conducted in a red soil derived from Quaternary red clay in the Ecological ExperimentStation of Red Soil, the Chinese Academy of Sciences, located in Yingtan (28° 15′ 30″ N, 116° 55′ 30... An experiment was conducted in a red soil derived from Quaternary red clay in the Ecological ExperimentStation of Red Soil, the Chinese Academy of Sciences, located in Yingtan (28° 15′ 30″ N, 116° 55′ 30″E), Jiangxi Province. The results show that the major ways of nutrient loss are leaching and nitrogenvolatilization. Rationalizing crop distribution, stimulating nutrient recycling, and improving internal nutrientflow are effective measures to decrease nutrient loss and to promote nutrient utilization efficiency. Theimportant ways of regulating nutrient cycling and balance in the agroecosystem of the red soil are to establishoptimal eco-agricultural models, practice balanced fertilization and combine the cropping system with thelivestock system. 展开更多
关键词 BALANCE nutrient cycling red soil agroecosystem regulation options
下载PDF
Mechanical and electrical properties of coarse-grained soilaffected by cyclic freeze-thaw in high cold regions 被引量:12
8
作者 QU Yong-long NI Wan-kui +3 位作者 NIU Fu-jun MU Yan-hu CHEN Guo-liang LUO Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期853-866,共14页
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content... To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity. 展开更多
关键词 coarse-grained soil freeze-thaw cycle unconfined compressive strength electrical resistivity electrical resistivity model
下载PDF
Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography 被引量:15
9
作者 Ran An Lingwei Kong +1 位作者 Xianwei Zhang Chengsheng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期851-860,共10页
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to... Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results. 展开更多
关键词 Granite residual soil Dry-wet cycle X-ray micro computed tomography(micro-CT) Three-dimensional(3D)pore distribution Seepage simulations PERMEABILITY
下载PDF
Development and application of an instrument for simulating wetting-drying cycles of expansive soils under loads 被引量:3
10
作者 DONG Jun-gui LV Hai-bo WU Wei 《Journal of Mountain Science》 SCIE CSCD 2018年第11期2552-2560,共9页
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive ... Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength. 展开更多
关键词 Expansive soils Wetting-drying cycle Instrument Load Shear strength
下载PDF
Potential methane and nitrous oxide production and respiration rates from penguin and seal colony tundra soils during freezing–thawing cycles under different water contents in coastal Antarctica 被引量:2
11
作者 LIU Yashu ZHANG Wanying +1 位作者 ZHU Renbin XU Hua 《Advances in Polar Science》 2017年第1期61-74,共14页
In coastal Antarctica, frequent freezing-thawing cycles (FTCs) and changes to the hydrological conditions may affect methane (CH4) and nitrous oxide (N2O) production and respiration rates in tundra soils, which ... In coastal Antarctica, frequent freezing-thawing cycles (FTCs) and changes to the hydrological conditions may affect methane (CH4) and nitrous oxide (N2O) production and respiration rates in tundra soils, which are difficult to observe in situ. Tundra soils including omithogenic tundra soil (OAS), seal colony soil (SCS) and emperor penguin colony soil (EPS) were collected. In laboratory, we investigated the effects of FTCs and water addition on potential N2O and CH4 production and respiration rates in the soils. The CH4 fluxes from OAS and SCS were much less than that from EPS. Meanwhile, the N2O fluxes from OAS and EPS were much less than that from SCS. The N2O production rates from all soils were extremely low during freezing, but rapidly increased following thawing. In all cases, FTC also induced considerably enhanced soil respiration, indicating that soil respiration response was sensitive to the FTCs. The highest cumulative rates of CH4, N2O and CO2 were 59.5 mg CH4-C·kg-1 in EPS, 6268.8μg N2O-N·kg-1 in SCS and 3522.1mg CO2-C·kg-1 in OAS. Soil water addition had no significant effects on CH4 production and respiration rates, but it could reduce N2O production in OAS and EPS, and it stimulated N2O production in SCS. Overall, CH4 and N2O production rates showed a trade-off relationship during the three FTCs. Our results indicated that FTCs greatly stimulated soil N2O and CO2 production, and water increase has an important effect on soil N2O production in coastal Antarctic tundra. 展开更多
关键词 ANTARCTICA CH4 N2O soil respiration freezing-thawing cycles TUNDRA
下载PDF
Determining representative elementary volume size of in-situ expansive soils subjected to drying-wetting cycles through field test 被引量:3
12
作者 CHENWei LI Guo-wei +3 位作者 HOU Yu-zhou WU Jian-tao YUAN Jun-ping Andrew Cudzo AMENUVOR 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3246-3259,共14页
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to... Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given. 展开更多
关键词 representative elementary volume(REV) drying-wetting cycles expansive soil crack intensity factor(CIF) COHESION cracks
下载PDF
Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash 被引量:3
13
作者 ZHA Fu-sheng LIU Jing-jing +1 位作者 XU Long CUI Ke-rui 《Journal of Central South University》 SCIE EI CAS 2013年第7期1947-1952,共6页
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves... Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles. 展开更多
关键词 solidification/stabilization (S/S) heavy metal contaminated soil drying and wetting cycles long-term stability
下载PDF
A Comparative Study of Element Cycling in the Soil-Plant System: A Case Study of Shaly and Calcareous Soils, Southern Benue Trough, Nigeria 被引量:1
14
作者 T. N. Nganje C. I. Adamu 《International Journal of Geosciences》 2014年第4期453-463,共11页
This study focused on the cycling of major and trace elements in the soil-plant system in parts of Southern Benue Trough, Nigeria. Surface soil samples and cassava crop samples were collected from cultivated farmlands... This study focused on the cycling of major and trace elements in the soil-plant system in parts of Southern Benue Trough, Nigeria. Surface soil samples and cassava crop samples were collected from cultivated farmlands underlined by shaly and calcareous soils and were analysed using standard techniques. The results show that shaly soils are relatively acidic (pH, 4.8 - 6.6) with high level of organic matter content (OM, 3.2% - 8.7%) compared to calcareous soils (pH, 5.6 - 7.2;OM 1.6% - 7.0%). The soils are enriched in elemental composition relative to the world average abundances in soil. The maximum levels of K, Al, and Zn were obtained from shaly soils. The computed accumulation factors are generally <1. Elemental levels decreased in the plant parts in the order tuber > leaf > stem. Significant correlation was obtained between elemental associations of calcareous surface soils compared to that of shaly soils. R-mode factor analysis revealed the controls of soil geochemistry to include lithology, anthropogenic and environmental factors. A stepwise linear regression analysis identified soil elemental component, pH and organic matter as some of the factors influencing soil-plant metal uptake. 展开更多
关键词 soil Plant System cyclING of Elements CALCAREOUS soilS Shaly soilS SOUTHERN Benue TROUGH NIGERIA
下载PDF
Law of Water Content Change in Subgrade Soil Under Action of Dry-Wet Cycle 被引量:1
15
作者 ZHANG Qingsong JI Tianjian XIAO Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期69-75,共7页
Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil ... Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil water content variation under the action of dry-wet cycle through sensor readings. Thus,an indoor soil column model test system is designed,and the readings of the sensors are used to determine the changing law of moisture field in the subgrade soil. The sensor readings indicate that the water content gradually decreases along the height of the soil column,and the water in the upper part of the soil column continuously loses,while the water in the lower part migrates upward to supplement. With the increase of dry-wet cycle index,the water holding capacity of soil decreases,and the soil surface gradually cracks and tends to rupture. 展开更多
关键词 subgrade soil dry-wet cycle water content change soil column indoor test
下载PDF
Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002–2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) data 被引量:5
16
作者 WANG Rui ZHU Qingke +1 位作者 MA Hao AI Ning 《Journal of Arid Land》 SCIE CSCD 2017年第6期850-864,共15页
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia... Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR. 展开更多
关键词 Advanced Microwave Scanning Radiometer for the Earth Observing System air temperature near-surface soil freeze-thaw cycles source region of the Yellow River
下载PDF
Calculation of salt-frost heave of sulfate saline soil due to long-term freeze−thaw cycles 被引量:1
17
作者 Tao Wen Sai Ying FengXi Zhou 《Research in Cold and Arid Regions》 CSCD 2020年第5期284-294,共11页
Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-fro... Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-frost heave can be restricted considerably by loads,and there is a critical load for the salt-frost heave cumulative effect.Under this load,peak values of salt-frost heave approach a constant,and the residual values become 0.There is no longer structure heave or cumulative effect of saline soil exposed to freeze−thaw cycles under the critical load.Taking cumulative effect into account in calculations of salt-frost heave,a salt-frost heave model under freeze−thaw cycles is developed. 展开更多
关键词 sulfate saline soil freeze−thaw cycles LOAD salt-frost heave
下载PDF
The effect of the feedback cycle between the soil organic carbon and the soil hydrologic and thermal dynamics
18
作者 Kensuke Mori Takeshi Ise +2 位作者 Miyuki Kondo Yongwon Kim Hiroyuki Enomoto 《Open Journal of Ecology》 2012年第2期90-95,共6页
Biogeochemical feedback processes between soil organic carbon (SOC) in high-latitude organic soils and climate change is of great concern for projecting future climate. More accurate models of the SOC stock and its dy... Biogeochemical feedback processes between soil organic carbon (SOC) in high-latitude organic soils and climate change is of great concern for projecting future climate. More accurate models of the SOC stock and its dynamics in organic soil are of increasing importance. As a first step toward creating a soil model that accurately represents SOC dynamics, we have created the Physical and Biogeochemical Soil Dynamics Model (PB-SDM) that couples a land surface model with a SOC dynamics model to simulate the feedback cycle of SOC accumulation and thermal hydrological dynamics of high-latitude soils. The model successfully simulated soil temperatures for observed data from a boreal forest near Fairbanks, and 2000 year simulations indicated that the effect of the feedback cycle of SOC accumulation on soil thickness would result in a significant differences in the amount of SOC. 展开更多
关键词 soil ORGANIC CARBON High-Latitude soil soil Hydrology soil Thermal Regime Land Surface MODEL ORGANIC CARBON Decomposition MODEL FEEDBACK cyclE
下载PDF
Influence of Soil Heterogeneity on the Behavior of Frozen Soil Slope under Freeze-Thaw Cycles
19
作者 Kang Liu Yanqiao Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期119-135,共17页
Soil slope stability in seasonally frozen regions is a challenging problem for geotechnical engineers.The freezethaw process of soil slope caused by the temperature fluctuation increases the difficulty in predicting t... Soil slope stability in seasonally frozen regions is a challenging problem for geotechnical engineers.The freezethaw process of soil slope caused by the temperature fluctuation increases the difficulty in predicting the slope stability because the soil property is influenced by the freeze-thaw cycle.In addition,the frozen soil,which has ice crystal,ice lens and experienced freeze-thaw process,could present stronger heterogeneity.Previous research has not investigated the combined effect of soil heterogeneity and freeze-thaw cycle.This paper studies the influence of soil heterogeneity on the stability of frozen soil slope under freeze-thaw cycles.The local average subdivision(LAS)is utilized to model the soil heterogeneity.A typical slope geometry has been chosen and analysed as an illustrative example and the strength reduction method is used to calculate the factor of safety(FOS)of slope.It has been found that when the temperature is steady,the FOS of the frozen soil slope is influenced by the spatial variability of the thermal conductivity,but the influence is not significant.When the standard deviation and the SOF of the thermal conductivity increase,the mean of the FOS is equal to the FOS of the homogeneous case and the standard deviation of the FOS also increases.After the frozen soil goes through freeze-thaw process,the FOS of the frozen soil slope decreases due to the reduction in the cohesion and the internal friction angle caused by the freeze-thaw cycles.Furthermore,the decreasing ratio of the FOS becomes more scattered after the 5th freeze-thaw cycle compared to that of the FOS after the 1st freeze-thaw cycle.The larger variability of the FOS could induce inaccuracy in the prediction of the frozen soil slope stability. 展开更多
关键词 Factor of safety(FOS) freeze-thaw cycle frozen soil slope soil heterogeneity thermal conductivity
下载PDF
Variation law of microscopic pore of loess-like soil after several freeze-thaw cycles in seasonal frozen soil region
20
作者 CHEN Zongfang CHEN Hui'e ZHANG Ying 《Global Geology》 2013年第3期154-158,共5页
In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under differen... In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under different freezing temperatures,the authors carried out freeze-thaw cycle tests for 3 times and 20 times,respectively.With mercury intrusion porosimetry and granulometric analysis,from the micro-structure,the authors studied the law that freeze-thaw cycle times and frozen temperature effect on the variation of microscopic pore of loesslike soil.This result can provide theoretical basis for comprehensive treatment of problems in the construction of the project in seasonal frozen loess-like soil region. 展开更多
关键词 loess-like soil freeze-thaw cycles variation law of microscopic pore granulometric composition
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部