High concentrations of heavy metal in farmland threatens food production and human health. Our study assesses soil quality and the distribution of Cd, Cr, Cu, Zn, Pb and Ni, to identify possible sources of heavy metal...High concentrations of heavy metal in farmland threatens food production and human health. Our study assesses soil quality and the distribution of Cd, Cr, Cu, Zn, Pb and Ni, to identify possible sources of heavy metals along the banks of the Yangtze River in Huangshi. Heavy metal concentrations of 22 topsoil samples were measured using the inductively coupled plasma mass spectrometry instrument and data was analyzed by multivariate statistic approaches. Heavy metal contamination risk assessment was performed using a combination of the Nemerow multi-factor index method, the Hakanson potential ecological risk index method and the Muller index of geo-accumulation method. These methods determined similar results indicating that cadmium(Cd) poses a health risk to residents at the study site while Cr, Cu, Zn, Pb and Ni do not. The Nemerow multi-factor index method demonstrated that 18 samples were heavily polluted, three moderately polluted and one lightly polluted. The Muller index of geo-accumulation method found ten samples were moderately to strongly polluted by Cd, five were moderately polluted, six were lightly to moderately polluted and one was lightly polluted. The Hakanson potential ecological risk index method proved six samples were strongly polluted, seven were moderately polluted and nine were lightly polluted. Since our sampling sites were all in agricultural lands, we recommend the potential ecological risk index method as the most effective given it not only considers the range of pollutants contributing to soil pollution but factors in heavy metals toxicity. We are apt that the source of the high concentrations of Cd found in topsoil is derived from alluvial sediments upstream of the Yangtze River with a high percentage of residual speciation and a low percentage of exchangeable speciation distribution of Cd. This in turns indicates that a high concentration of Cd in soil had little impact on the natural environment. However, 31.9% of the iron-manganese oxides bound speciation indicating that such levels of Cd in soil would be potentially hazardous to the crops, particularly if exposed to a reductive condition.展开更多
Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack...Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack of insights in the P release with time and in the corresponding mechanisms. The aim of this work was to evaluate the fertilizer performance in terms of P release and use efficiency of recovered struvite, FePO_4-sludge, digestate, and animal manure as compared to fossil reserve-based mineral triple superphosphate(TSP). First, product physicochemical characteristics and P fractions in the context of European fertilizer legislation were assessed. Next, a controlled greenhouse experiment was set up to evaluate plant reactions as well as changes of P availability in a sandy soil with high P status and a Rheinsand soil with low P status. Soil P fractions were determined in the extracts with water, ammonium lactate and CaCl_2, and in soil solution sampled with Rhizon soil moisture samplers. Based on all results, it is worth conducting long-term field trials to evaluate the P release effect of struvite and digestate as compared to animal manure and TSP on different soil types with varying P status. These products showed promise as sustainable substitutes for conventional P fertilizers and could contribute to a more efficient use of P in agriculture. A refined classification of P application standards/recommendations in terms of soil P status, soil texture, and fertilizer characteristics, next to the crop P demand, is recommended. Moreover, the additional use of Rhizon samplers for determination of direct available P, including dissolved organic P, is proposed for better understanding and categorization of different P fertilizers in environmental and fertilizer legislations.展开更多
基金supported by the National Natural Science Foundation of China (40772155)the Opening Fund of Institute of Hydrogeology and Environmental Geology, CAGS (KF201505)
文摘High concentrations of heavy metal in farmland threatens food production and human health. Our study assesses soil quality and the distribution of Cd, Cr, Cu, Zn, Pb and Ni, to identify possible sources of heavy metals along the banks of the Yangtze River in Huangshi. Heavy metal concentrations of 22 topsoil samples were measured using the inductively coupled plasma mass spectrometry instrument and data was analyzed by multivariate statistic approaches. Heavy metal contamination risk assessment was performed using a combination of the Nemerow multi-factor index method, the Hakanson potential ecological risk index method and the Muller index of geo-accumulation method. These methods determined similar results indicating that cadmium(Cd) poses a health risk to residents at the study site while Cr, Cu, Zn, Pb and Ni do not. The Nemerow multi-factor index method demonstrated that 18 samples were heavily polluted, three moderately polluted and one lightly polluted. The Muller index of geo-accumulation method found ten samples were moderately to strongly polluted by Cd, five were moderately polluted, six were lightly to moderately polluted and one was lightly polluted. The Hakanson potential ecological risk index method proved six samples were strongly polluted, seven were moderately polluted and nine were lightly polluted. Since our sampling sites were all in agricultural lands, we recommend the potential ecological risk index method as the most effective given it not only considers the range of pollutants contributing to soil pollution but factors in heavy metals toxicity. We are apt that the source of the high concentrations of Cd found in topsoil is derived from alluvial sediments upstream of the Yangtze River with a high percentage of residual speciation and a low percentage of exchangeable speciation distribution of Cd. This in turns indicates that a high concentration of Cd in soil had little impact on the natural environment. However, 31.9% of the iron-manganese oxides bound speciation indicating that such levels of Cd in soil would be potentially hazardous to the crops, particularly if exposed to a reductive condition.
基金supported by the European Commission under the Interreg IVb NWE Project Arbor(No.Interreg IVB 223G)the Environmental&Energy Technology Innovation Platform(MIP),Belgium+2 种基金the Natural Science and Engineering Research Council of Canada(NSERC)the Fonds de Recherche de Québec sur la Nature et les Technologies(FRQNT),CanadaPrimodal Inc.,Hamilton,Canada
文摘Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack of insights in the P release with time and in the corresponding mechanisms. The aim of this work was to evaluate the fertilizer performance in terms of P release and use efficiency of recovered struvite, FePO_4-sludge, digestate, and animal manure as compared to fossil reserve-based mineral triple superphosphate(TSP). First, product physicochemical characteristics and P fractions in the context of European fertilizer legislation were assessed. Next, a controlled greenhouse experiment was set up to evaluate plant reactions as well as changes of P availability in a sandy soil with high P status and a Rheinsand soil with low P status. Soil P fractions were determined in the extracts with water, ammonium lactate and CaCl_2, and in soil solution sampled with Rhizon soil moisture samplers. Based on all results, it is worth conducting long-term field trials to evaluate the P release effect of struvite and digestate as compared to animal manure and TSP on different soil types with varying P status. These products showed promise as sustainable substitutes for conventional P fertilizers and could contribute to a more efficient use of P in agriculture. A refined classification of P application standards/recommendations in terms of soil P status, soil texture, and fertilizer characteristics, next to the crop P demand, is recommended. Moreover, the additional use of Rhizon samplers for determination of direct available P, including dissolved organic P, is proposed for better understanding and categorization of different P fertilizers in environmental and fertilizer legislations.