Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respi...Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.展开更多
Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to...Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.展开更多
Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations...Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.展开更多
Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model ...Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity (k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature (Tg), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity (A) in the SiB2 greatly underestimates soil thermal conductivity, we compared five Mgorithms of A involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve Tg prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated Tg values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled Tg and field measurements are mostly within the margin of error of -4-2 K during 3 August to 4 September 1998.展开更多
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly...We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.展开更多
According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using th...According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using the data observed during the intensive observation period of the Dunhuang Land–Surface Process Field Experiment (DLSPFE) (May–June 2000). Using the relative reflection as weighting factor, the weighted mean of the surface albedo over Dunhuang Gobi in typical arid region is calculated and its values are 0.255 ± 0.021. After canceling the interference of the buildings, the mean values of the roughness length averaged with logarithm is 0.0019 ± 0.00071 m. After removing the influence of the oasis, the soil wetness factor computed with data under condition of no precipitation is 0.0045. After removing the influence of the precipitation , the mean values of the soil heat capacity over Dunhuang Gobi in typical arid region is 1.12 × 10<SUP>6</SUP> J m<SUP>−3</SUP>K<SUP>−1</SUP>, a bit smaller than the values observed in HEIFE. But the soil heat diffusivity and conductivity are about one of those observed in HEIFE. The soil water content over Dunhuang Gobi in typical synoptic condition is very little and does not exceed 1% basically.展开更多
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated ...The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).展开更多
文摘Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.
基金supported bythe National Natural Science Foundation of China un-der Grants Nos40725015 and 40633017the Na-tional Basic Research Program of China under Grant No2006CB400501
文摘Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.
基金the National Basic Research Program of China (973Program, 2006CB500401).
文摘Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.
基金supported by National Natural Science Foundation of China (Grant No.40874047)supported by National Natural Science Foundation of China (Grant No.40975009)supported by the National Key Basic Research Program (Grant No. 2012CB417203)
文摘Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity (k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature (Tg), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity (A) in the SiB2 greatly underestimates soil thermal conductivity, we compared five Mgorithms of A involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve Tg prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated Tg values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled Tg and field measurements are mostly within the margin of error of -4-2 K during 3 August to 4 September 1998.
基金supported by the National Natural Science Foundation of China(Grant No.4087404741174084)
文摘We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.
基金This research was sponsored by the National Key Program for Developing Basic Sciences Research on the Formation Mechanism and Pr
文摘According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using the data observed during the intensive observation period of the Dunhuang Land–Surface Process Field Experiment (DLSPFE) (May–June 2000). Using the relative reflection as weighting factor, the weighted mean of the surface albedo over Dunhuang Gobi in typical arid region is calculated and its values are 0.255 ± 0.021. After canceling the interference of the buildings, the mean values of the roughness length averaged with logarithm is 0.0019 ± 0.00071 m. After removing the influence of the oasis, the soil wetness factor computed with data under condition of no precipitation is 0.0045. After removing the influence of the precipitation , the mean values of the soil heat capacity over Dunhuang Gobi in typical arid region is 1.12 × 10<SUP>6</SUP> J m<SUP>−3</SUP>K<SUP>−1</SUP>, a bit smaller than the values observed in HEIFE. But the soil heat diffusivity and conductivity are about one of those observed in HEIFE. The soil water content over Dunhuang Gobi in typical synoptic condition is very little and does not exceed 1% basically.
基金supported by and the Fundamental Research Funds for the National Science Foundation of China (No. 41171238)the Ministry of Science and Technology (No. 2013BAD11B01)+1 种基金the Central Universities (No. KYTZ201404)the Nonprofit Research Foundation for Agriculture (No. 200903003)
文摘The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).