Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio...Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.展开更多
The majority of rice(Oryza sativa L.) produced in the southern USA is drill-seeded and grown under upland-like conditions because permanent flooding is established after the four-leaf stage. Therefore, rice during the...The majority of rice(Oryza sativa L.) produced in the southern USA is drill-seeded and grown under upland-like conditions because permanent flooding is established after the four-leaf stage. Therefore, rice during the seedling growth stage will be subjected to variable soil moisture content. A greenhouse experiment was conducted to evaluate the performance of 15 rice cultivars commonly grown in Mississippi of USA under early-season soil moisture stress. Twenty morpho-physiological parameters of rice seedlings subjected to three different levels(100%, 66% and 33% field capacity) of soil moisture, from 10 to 30 d after sowing, were measured. Significant moisture stress × treatment interaction(P < 0.001) was observed for most of the parameters. Further, the total drought response index(TDRI) was developed to score the cultivars for drought tolerance with the variation from 26.88 to 36.21. Accordingly, the cultivars were classified into different groups of tolerance. The cultivars CL152 and CL142-AR were classified as the least and the most tolerant to drought based on TDRI and standard deviation, respectively. Even though both total root(R^2 = 0.98) or shoot(R^2 = 0.76) drought responses indices were positively correlated with TDRI, root traits were important in deriving the indices. Therefore, TDRI could be used to select cultivars for drought tolerance in a given environment and develop rice varieties with early-season drought tolerance. However, further research is needed to identify and characterize tolerance at other stages to assist breeding programs in rice.展开更多
基金supported by the National Natural Science Foundation of China(42071285,42371297)the Key R&D Program Projects in Shaanxi Province of China(2022SF-382)the Fundamental Research Funds for the Central Universities(GK202302002).
文摘Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.
基金funded by Mississippi Rice Promotion Board and United States Department of AgricultureNational Institute of Food and Agriculture(USDA-NIFA,Grant No.2013-34263-20931)sub-award to Mississippi State University(Grant No.G-7799-2)
文摘The majority of rice(Oryza sativa L.) produced in the southern USA is drill-seeded and grown under upland-like conditions because permanent flooding is established after the four-leaf stage. Therefore, rice during the seedling growth stage will be subjected to variable soil moisture content. A greenhouse experiment was conducted to evaluate the performance of 15 rice cultivars commonly grown in Mississippi of USA under early-season soil moisture stress. Twenty morpho-physiological parameters of rice seedlings subjected to three different levels(100%, 66% and 33% field capacity) of soil moisture, from 10 to 30 d after sowing, were measured. Significant moisture stress × treatment interaction(P < 0.001) was observed for most of the parameters. Further, the total drought response index(TDRI) was developed to score the cultivars for drought tolerance with the variation from 26.88 to 36.21. Accordingly, the cultivars were classified into different groups of tolerance. The cultivars CL152 and CL142-AR were classified as the least and the most tolerant to drought based on TDRI and standard deviation, respectively. Even though both total root(R^2 = 0.98) or shoot(R^2 = 0.76) drought responses indices were positively correlated with TDRI, root traits were important in deriving the indices. Therefore, TDRI could be used to select cultivars for drought tolerance in a given environment and develop rice varieties with early-season drought tolerance. However, further research is needed to identify and characterize tolerance at other stages to assist breeding programs in rice.