期刊文献+
共找到3,627篇文章
< 1 2 182 >
每页显示 20 50 100
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
1
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised Universal soil Loss Equation(RUSLE) Jinghe River Basin
下载PDF
Causes of a Typical Southern Flood and Northern Drought Event in 2015 over Eastern China 被引量:3
2
作者 Zhuoyuan LI Qing YANG +2 位作者 Dian YUAN Er LU Zhuguo MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期2092-2107,I0014,I0015,共18页
The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern,with anti-phased precipitation anomalies between southern China and northern China,known as the“southern floo... The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern,with anti-phased precipitation anomalies between southern China and northern China,known as the“southern flooding and northern drought”(SF-ND)pattern.In 2015,China experienced heavy rainfall in the south and the worst drought since 1979 in the north,which caused huge social and economic losses.Using reanalysis data,the atmospheric circulation anomalies and possible mechanisms related to the summer precipitation anomalies in 2015 were examined.The results showed that both El Niño and certain atmospheric teleconnections,including the Pacific Japan/East Asia Pacific(PJ/EAP),Eurasia pattern(EU),British–Baikal Corridor pattern(BBC),and Silk Road mode(SR),contributed to the dipole pattern of precipitation anomalies.The combination of these factors caused a southwards shift of the western Pacific subtropical high(WPSH)and a weakening of the East Asian summer monsoon.Consequently,it was difficult for the monsoon front and associated rain band to migrate northwards,which meant that less precipitation occurred in northern China while more precipitation occurred in southern China.This resulted in the SF-ND event.Moreover,further analysis revealed that global sea surface temperature anomalies(SSTAs)or sea-ice anomalies were key to stimulating these atmospheric teleconnections. 展开更多
关键词 drought flood El Niño atmospheric teleconnection sea surface temperature anomaly
下载PDF
Spatiotemporal Characteristics of Droughts and Floods in Shandong Province,China and Their Relationship with Food Loss 被引量:1
3
作者 YANG Wentong ZHANG Liyuan YANG Ziyu 《Chinese Geographical Science》 SCIE CSCD 2023年第2期304-319,共16页
Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardiz... Mastering the pattern of food loss caused by droughts and floods aids in planning the layout of agricultural production,determining the scale of drought and flood control projects,and reducing food loss.The Standardized Precipitation Evapotranspiration Index is calculated using monthly meteorological data from 1984 to 2020 in Shandong Province of China and is used to identify the province’s drought and flood characteristics.Then,food losses due to droughts and floods are estimated separately from disaster loss data.Finally,the relationship between drought/flood-related factors and food losses is quantified using methods such as the Pearson correlation coefficient and linear regression.The results show that:1)there is a trend of aridity in Shandong Province,and the drought characteristic variables are increasing yearly while flood duration and severity are decreasing.2)The food losses caused by droughts in Shandong Province are more than those caused by floods,and the area where droughts and floods occur frequently is located in Linyi City.3)The impact of precipitation on food loss due to drought/flood is significant,followed by potential evapotranspiration and temperature.4)The relationship between drought and flood conditions and food losses can be precisely quantified.The accumulated drought duration of one month led to 1.939×10^(4)t of grain loss,and an increase in cumulative flood duration of one month resulted in1.134×10^(4)t of grain loss.If the cumulative drought severity and average drought peak increased by one unit,food loss due to drought will increase by 1.562×10^(4)t and 1.511×10^(6)t,respectively.If the cumulative flood severity and average flood peak increase by one unit,food loss will increase by 8.470×103t and 1.034×10^(6)t,respectively. 展开更多
关键词 drought disaster flood disaster food loss Pearson correlation Standardized Precipitation Evapotranspiration Index SHANDONG China
下载PDF
The Response of Anomalous Vertically Integrated Moisture Flux Patterns Related to Drought and Flood in Southern China to Sea Surface Temperature Anomaly 被引量:2
4
作者 董娜 徐祥德 +4 位作者 蔡雯悦 王春竹 赵润泽 魏凤英 孙婵 《Journal of Tropical Meteorology》 SCIE 2023年第2期179-190,共12页
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ... With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather. 展开更多
关键词 drought in southern China in 2022 VIMFC anomaly high impact areas of SST anomaly anomalous moisture transport circulation pattern typical drought and flood years
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
5
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 droughtS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Global Change in Agricultural Flash Drought over the 21st Century 被引量:1
6
作者 Emily BLACK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期209-220,I0002-I0019,共30页
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop... Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa. 展开更多
关键词 flash drought climate change soil moisture agricultural drought CMIP
下载PDF
Variation Characteristics of Droughts and Floods in Deyang Area in the Past 30 years
7
作者 Zhili ZHANG 《Meteorological and Environmental Research》 2023年第6期29-32,39,共5页
Based on the data of annual average precipitation in Deyang area and its five stations (Mianzhu, Deyang, Zhongjiang, Shifang and Guanghan) from 1984 to 2013, the annual precipitation anomaly percentage was calculated,... Based on the data of annual average precipitation in Deyang area and its five stations (Mianzhu, Deyang, Zhongjiang, Shifang and Guanghan) from 1984 to 2013, the annual precipitation anomaly percentage was calculated, and then the flood and drought situation in Deyang area was graded to discuss the variation characteristics of droughts and floods in the past 30 years. The results show that the cycle of droughts and floods in Deyang was about 3-5 a. The precipitation anomaly percentage indicates that the climate in Deyang area of Sichuan tended to be dry slowly in the past 30 years, and Deyang gradually entered a dry and warm period. 展开更多
关键词 drought and flood Precipitation anomaly percentage Deyang SICHUAN
下载PDF
An overview of soil moisture drought research in China:Progress and perspective
8
作者 Aihui Wang Xin Ma 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第2期22-27,共6页
论文回顾了中国土壤湿度干旱(SMD)历史重建和季节预测研究进展,并对未来研究进行了展望,自1950s年代以来,全国整体干旱频率增加,持续时间延长,且有明显区域特征.SMD预测多是利用土壤湿度与气候变量之间的统计关系,而少量基于动力学方法... 论文回顾了中国土壤湿度干旱(SMD)历史重建和季节预测研究进展,并对未来研究进行了展望,自1950s年代以来,全国整体干旱频率增加,持续时间延长,且有明显区域特征.SMD预测多是利用土壤湿度与气候变量之间的统计关系,而少量基于动力学方法的干旱预测研究强调了初始条件和大气强迫数据对季节尺度干旱预测的重要性,本论文提出:1)加强多时间尺度,跨区域的SMD研究;2)联合气候预测系统,陆面模式和多源土壤湿度数据研制SMD预测系统。 展开更多
关键词 土壤湿度干旱 重建 预测 展望
下载PDF
Drought and Flood Analysis and Impact on Food Production in Fushun 被引量:3
9
作者 李金义 银燕 +1 位作者 张影 迟贵富 《Meteorological and Environmental Research》 CAS 2010年第6期33-35,38,共4页
Based on monthly precipitation data during 1961-2008 in 50 stations in Fushun,drought and flood indicators of three counties were calculated with Z index method. The geographical and seasonal distribution characterist... Based on monthly precipitation data during 1961-2008 in 50 stations in Fushun,drought and flood indicators of three counties were calculated with Z index method. The geographical and seasonal distribution characteristics of Fushun were analyzed,and so was the impact of droughts and floods on food production. It shows that,since 1961,there are 7 poor harvest years in Fushun,with quadrennial caused by continuous seasonal floods or droughts,two years by year drought,one year by summer flood. 展开更多
关键词 drought and flood indicators Food production Z index droughts or floods in continuous seasons China
下载PDF
The Analysis on the Features of the Atmospheric Circulation in Preceding Winters for the Summer Drought and Flooding in the Yangtze And Huaihe River Valley 被引量:23
10
作者 孙柏民 孙淑清 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第1期79-90,共12页
Based on the annual variation of the rainfall departure percentage in summer in the lower-middle reaches of the Yangtze River and the Huaihe River valley, 7 cases for the abnormal drought and flooding summers (the dro... Based on the annual variation of the rainfall departure percentage in summer in the lower-middle reaches of the Yangtze River and the Huaihe River valley, 7 cases for the abnormal drought and flooding summers (the drought years: 1981. 1984, 1985; the flooding yearst 1980, 1982, 1983, 1987) are selected. First we analyse the general circulation characteristics of the summer drought and flooding, and then the evolution processes of the general circulation patterns from preceding winters to summers are studied. It is found that during the two kinds of preceding winters for the drought and flooding summer, not only the general circulation patterns in the high-mid latitudes, the local Hadley cells in East Asia but also the activities of the cold surge in the lower latitude are different obviously. Spring, especially April, is the turning period of the general circulation in preceding winter for the drought or nooding summer evolution towards opposite direction. Hereafter, the drought or flooding circulation pattern is established and developed. 展开更多
关键词 MONSOON drought/flooding Cold surge Hadley cell
下载PDF
The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin 被引量:24
11
作者 杨辉 李崇银 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期540-553,共14页
The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show th... The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years. 展开更多
关键词 summer severe flood and drought in the Changjiang-Huaihe River Basin intraseasonal oscillation ISO circulation pattern
下载PDF
Influences of Quinclorac on Culturable Microorganisms and Soil Respiration in Flooded Paddy Soil 被引量:5
12
作者 ZHEN-MEI LU, HANG MIN , AND YANG-FANG YE Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310029, Zhejiang, China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第4期314-322,共9页
Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes a... Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes and fungi were counted by a 10-fold serial dilution plate technique. Numbers of anaerobic fermentative bacteria (AFB), denitrifying bacteria (DNB) and hydrogen-producing acetogenic bacteria (HPAB) were numerated by three-tube anaerobic most-probable-number (MPN) methods with anaerobic liquid enrichment media. The number of methanogenic bacteria (MB) and nitrogen-fixing bacteria (NFB) was determined by the rolling tube method in triplicate. Soil respiration was monitored by a 102G-type gas chromatography with a stainless steel column filled with GDX-104 and a thermal conductivity detector. Results Quinclorac concentration was an important factor affecting the populations of various culturable microorganisms. There were some significant differences in the aerobic heterotrophic bacteria. AFB and DNB between soils were supplemented with quinclorac and non-quinclorac at the early stage of incubation, but none of them was persistent. The number of fungi and DNB was increased in soil samples treated by lower than 1.33μg·g-1 dried soil, while the CFU of fungi and HPAB was inhibited in soil samples treated by higher than 1.33μg·g-1 dried soil. The population of actinomycete declined in negative proportion to the concentrations of quinclorac applied after 4 days. However, application of quinclorac greatly stimulated the growth of AFB and NFB. MB was more sensitive to quinclorac than the others, and the three soil samples with concentrations higher than 1 μg·g-1 dried soil declined significantly to less than 40% of that in the control, but the number of samples with lower concentrations of quinclorac was nearly equal to that in the control at the end of experiments. Conclusion Quinclorac is safe to the soil microorganisms when applied at normal concentrations (0.67μg·g-1). 展开更多
关键词 QUINCLORAC soil culturable microorganisms soil respiration flooded paddy soil
下载PDF
Short-Term Influence of Herbicide Quinclorac on Enzyme Activities in Flooded Paddy Soils 被引量:8
13
作者 LüZhen-Mei MINHang YEYang-Fang 《Pedosphere》 SCIE CAS CSCD 2004年第1期71-76,共6页
The influence of quinclorac (3,7-dichloroquinoline-8-carboxylic acid) on enzyme activities in flooded paddy soils was assessed under laboratory conditions. The enzymes differed markedly in their response to quinclorac... The influence of quinclorac (3,7-dichloroquinoline-8-carboxylic acid) on enzyme activities in flooded paddy soils was assessed under laboratory conditions. The enzymes differed markedly in their response to quinclorac. Quinclorac inhibited proteinase, hydrogen peroxidase, phosphorylase, and urease activities.The higher the concentration of quinclorac applied, the more significant the inhibition to these observed activities with a longer time required to recover to the level of the control. However, soils supplemented with quinclorac were nonpersistent for proteinase, phosphorylase and urease as opposed to soils without quinclorac. Dehydrogenase activity was also sensitive to quinclorac. Three soil samples with concentrations of quinclorac higher than 1 μg g-1 soil declined to less than 20% of that in the control. However, the highest dehydrogenase activity (up to 3.28-fold) was detected in soils with 2 μg g-1 soil quinclorac on the 25th day after treatment. Quinclorac had a relatively mild effect on saccharase activity at the concentrations used in this experiment and a stimulatory one on soil respiration when added to soil at normal field concentrations.Nonetheless it was inhibited at higher concentrations in paddy soils. Quinclorac is still relatively safe to the soil ecosystem when applied at a normal concentration (0.67 μg g-1 dried soil) but may have some effects on soil enzymes at higher concentrations. 展开更多
关键词 flooded paddy soil QUINCLORAC soil enzyme activity soil respiration
下载PDF
Response of soil respiration to a severe drought in Chinese Eucalyptus plantations 被引量:4
14
作者 Shaojun Wang Hong Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第4期841-847,共7页
Extreme droughts can adversely affect the dynamics of soil respiration in tree plantations. We used a severe drought in southwestern China as a case study to estimate the effects of drought on temporal variations in s... Extreme droughts can adversely affect the dynamics of soil respiration in tree plantations. We used a severe drought in southwestern China as a case study to estimate the effects of drought on temporal variations in soil respiration in a plantation of Eucalyptus globulus. We documented a clear seasonal pattern in soil respiration with the highest values (100.9 mg C-CO2 m(-2) h(-1)) recorded in June and the lowest values (28.7 mg C-CO2 m(-2) h(-1)) in January. The variation in soil respiration was closely associated with the dynamics of soil water driven by the drought. Soil respiration was nearly twice as great in the wet seasons as in the dry seasons. Soil water content accounted for 83-91% of variation in soil respiration, while a combined soil water and soil temperature model explained 90-99% of the variation in soil respiration. Soil water had pronounced effects on soil respiration at the moisture threshold of 6-10%. Soil water was strongly related to changes in soil parameters (i.e., bulk density, pH, soil organic carbon, and available nitrogen). These strongly influenced seasonal variation in soil respiration. We found that soil respiration was strongly suppressed by severe drought. Drought resulted in a shortage of soil water which reduced formation of soil organic carbon, impacted soil acid-base properties and soil texture, and affected soil nutrient availability. 展开更多
关键词 drought Eucalyptus globulus Global change soil respiration
下载PDF
Future Changes of Drought and Flood Events in China under a Global Warming Scenario 被引量:15
15
作者 CHEN Huo-Po SUN Jian-Qi CHEN Xiao-Li 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第1期8-13,共6页
This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under th... This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase. 展开更多
关键词 standardized precipitation index drought/ flood PROJECTION
下载PDF
Influences of drip and flood irrigation on soil carbon dioxide emission and soil carbon sequestration of maize cropland in the North China Plain 被引量:5
16
作者 GUO Shufang QI Yuchun +4 位作者 PENG Qin DONG Yunshe HE Yunlong YAN Zhongqing WANG Liqin 《Journal of Arid Land》 SCIE CSCD 2017年第2期222-233,共12页
The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon se... The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain. 展开更多
关键词 drip irrigation flood irrigation spatio-temporal variation carbon dioxide soil organic carbon North China Plain
下载PDF
DIAGNOSTIC ANALYSIS OF PERSISTENT DROUGHT/FLOOD EVENTS IN SUMMER OVER THE TWO-LAKE REGION OF CHINA 被引量:3
17
作者 吴贤云 丁一汇 叶成志 《Journal of Tropical Meteorology》 SCIE 2013年第3期264-275,共12页
Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as th... Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa. 展开更多
关键词 two-lake region drought/flood East-Asian SUMMER MONSOON
下载PDF
Functional Rehabilitation of the "Soil Reservoir"in Degraded Soils to Control Floods in the Yangtze River Watershed 被引量:8
18
作者 SHIXue-Zheng LIANGYin +3 位作者 YUDong-Sheng PANXian-Zhang E.D.WARNER WANGHong-Jie 《Pedosphere》 SCIE CAS CSCD 2004年第1期1-8,共8页
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ... The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River. 展开更多
关键词 flood calamity soil erosion 'soil reservoir' the yangtze river watershed
下载PDF
CHARACTERISTICS OF RAINFALL VARIATION OVER EAST CHINA FOR THE LAST 50 YEARS AND THEIR RELATIONSHIP WITH DROUGHTS AND FLOODS 被引量:10
19
作者 白爱娟 刘晓东 《Journal of Tropical Meteorology》 SCIE 2010年第3期255-262,共8页
With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PC... With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods. 展开更多
关键词 droughts and floods precipitation concentration degree and period East China
下载PDF
Numerical Study of Ural Blocking High's Effect Upon Asian Summer Monsoon Circulation and East China Flood and Drought 被引量:4
20
作者 何金海 周学鸣 叶荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第3期361-370,共10页
In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study i... In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land. 展开更多
关键词 Ural blocking high Asian summer monsoon circulation East China flood and drought
下载PDF
上一页 1 2 182 下一页 到第
使用帮助 返回顶部