期刊文献+
共找到5,699篇文章
< 1 2 250 >
每页显示 20 50 100
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
1
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine soil stoichiometry soil enzyme activities DISTANCE GRASSLAND
下载PDF
The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought,High Temperature,and Nitrogen and Phosphorus Deficits
2
作者 Yong Qin Xiaoyu Li +3 位作者 Yanhong Wu Hai Wang Guiqi Han Zhuyun Yan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期119-135,共17页
Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic ... Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil. 展开更多
关键词 Abiotic stress Salvia miltiorrhiza soil enzymes total polysaccharides soil carbon sequestration
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
3
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:3
4
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests 被引量:2
5
作者 Ewa Błońska Wojciech Prazuch Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2023年第3期316-327,共12页
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no... The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence. 展开更多
关键词 enzyme activity Forest soils Heavy fraction Light fraction soil organic matter
下载PDF
Effects of Carbon Nanomaterials on Soil Enzyme Activity of Turfgrass
6
作者 Ying XIONG Xue BAI +1 位作者 Shulan ZHAO Li'an DUO 《Agricultural Biotechnology》 CAS 2023年第1期76-77,83,共3页
[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbo... [Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbon nanomaterials on soil enzyme activity was studied by adding graphene, graphene oxide and carbon nanotubes to turfgrass soil. [Results] Compared with the control(CK), the activity of soil protease, sucrase, alkaline phosphatase and catalase was not significantly affected by carbon nanomaterials. Under the treatment of carbon nanotubes, urease activity was significantly lower than that of graphene and graphene oxide, and dehydrogenase activity was significantly lower than that of the CK, graphene and graphene oxide. [Conclusions] This study provides a theoretical basis for the safe application of carbon nanomaterials. 展开更多
关键词 Carbon nanomaterials TURFGRASS soil enzyme activity
下载PDF
Effects of Combined Application of Biochar-based Organic Fertilizer and Reduced Nitrogen Fertilizer on Soil Enzyme Activity and Yield of Purple Cabbage(Brassica oleracea var.capita rubra)in Yuanmou County
7
作者 Ben YANG Xiaoying LI +2 位作者 Yuechao WANG Mengjie CHEN Xiaoqin CHEN 《Agricultural Biotechnology》 CAS 2023年第2期76-83,共8页
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity... [Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County. 展开更多
关键词 soil enzyme activity YIELD Biochar-based organic fertilizer Nitrogenous fertilizer Purple cabbage
下载PDF
Effects of Different Planting Years on Physicochemical Properties and Enzyme Activities in Soil of Rice-Cherry Tomato Rotation
8
作者 Xiao Deng Chunyuan Wu +2 位作者 Yi Li Huadong Tan Jiancheng Su 《Open Journal of Ecology》 2023年第6期334-344,共11页
Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomat... Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato. 展开更多
关键词 Rice-Cherry Tomato Rotation Planting Years soil Physicochemical Properties enzyme Activity
下载PDF
Effects of Bamboo Charcoal-based Biochar on Soil Enzyme Activity and Microbial Community Structure
9
作者 Yizu PAN Sihai ZHANG 《Agricultural Biotechnology》 CAS 2023年第2期84-86,90,共4页
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr... [Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem. 展开更多
关键词 Bamboo charcoal-based biochar soil enzyme activity Microbial community structure
下载PDF
Effects of Different Fertilization Treatments on Soil Microbial Biomass,Soil Enzyme Activities and Related Nutrients in Continuous-cropping Sugarcane Field 被引量:11
10
作者 陈桂芬 刘忠 +7 位作者 黄雁飞 谭裕模 唐其展 黄太庆 杨绍锷 廖青 邢颖 黄玉溢 《Agricultural Science & Technology》 CAS 2017年第2期256-261,324,共7页
[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen... [Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive. 展开更多
关键词 Continuous-cropping sugarcane field FERTILIZATION soil microbial biomass soil enzyme activity NUTRIENT
下载PDF
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
11
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated CO2 forest soil nitrifying enzyme denitrifying enzyme N2-fixing enzyme
下载PDF
Effects of Different Vegetable Planting Modes on Soil Microbial Flora and Enzyme Activity 被引量:1
12
作者 孟平红 肖厚军 +4 位作者 郭惊涛 蔡霞 潘德怀 付纪勇 李桂莲 《Agricultural Science & Technology》 CAS 2015年第10期2265-2268,2272,共5页
To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient... To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period. 展开更多
关键词 VEGETABLE Efficient planting mode Growing region soil microbial flora soil enzyme activity Biodiversity index
下载PDF
Effects of Inoculation of Arbuscular Mycorrhizal Fungus and Apophysomyces spartina on P-uptake of Castor Oil Plant(Ricinus communis L.) and Rhizosphere Soil Enzyme Activities under Salt Stress 被引量:1
13
作者 张焕仕 钦佩 张卫明 《Agricultural Science & Technology》 CAS 2014年第4期659-664,共6页
[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of differen... [Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of different inoculated proportion of arbuscular mycorrhizal fungi (AMF) and Phosphate-sotubilizing fungus. Apophysomyces spartina, on growth, chlorophyll contents, P-uptake of castor bean (Ricinus communis L.) and rhizosphere soil pH values, available P concentrations, enzyme activities. [Result] The mixed inoculation of AMF and A. spartina significantly reduced soil pH value, increased soil available phosphorous contents, improved the activities of soil invertase, urease, neutral phosphatase, and alkaline phosphatase. Chlorophyll contents, P-uptake, and plant dry weight of castor bean were also in- creased. The optimal proportion of the number of AMF spores to A. spartina colonies was 28.56:11.5×10^5, which had positive effects on saline soil and could stimulate plant growth under greenhouse condition. [Conclusion] Appropriate propor- tion of AMF and A. spartina had the potential to enhance coastal saline soil prop- erty and promote castor bean growth. 展开更多
关键词 AM fungus Apophysomyces spartina Castor bean soil enzyme Coastal saline soil
下载PDF
Effects of Relative Soil Water Content on Antioxidant Enzyme System in Malus sieversii(Lebed.) Roem 被引量:1
14
作者 徐佳宁 刘钢 王文军 《Agricultural Science & Technology》 CAS 2016年第6期1281-1284,共4页
By pot experiment under artificially simulated water stress conditions, soluble protein content, MDA content and SOD, POD, CAT and APX activities in Malus sieversfi leaves were determined to reveal the response mechan... By pot experiment under artificially simulated water stress conditions, soluble protein content, MDA content and SOD, POD, CAT and APX activities in Malus sieversfi leaves were determined to reveal the response mechanism of M. sieversii to changes of relative soil water content. According to the results, with the decrease of relative soil water content, MDA content in M. sieversii leaves increased by mem- brane lipid peroxidation. Cells resist water stress-induced membrane lipid peroxidation and clear the increased reactive oxygen species by improving soluble protein content and SOD, POD, CAT and APX activities. However, various enzymes were involved in the response to water stress under different moisture conditions. In addition, the results indicated that M. sieversii had a good adaptability to higher relative soil water contents. 展开更多
关键词 Malus sieversii (Lebed.) Roem. Relative soil water content Membrane lipid peroxidation Antioxidant enzyme system
下载PDF
Responses of soil enzymes to long-term CO_2 enrichment in forest ecosystems of Changbai Mountains
15
作者 辛丽花 韩士杰 +2 位作者 李莉 周玉梅 郑俊强 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期119-122,共4页
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem... A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement. 展开更多
关键词 CO2 concentration CO2 enrichment soil enzymes INVERTASE DEHYDROGENASE CATALASE Polyphenol oxidase
下载PDF
Effects of Cadmium Contamination on Sugarcane Growth, Soil Microorganism and Soil Enzyme Activity
16
作者 廖洁 王天顺 +3 位作者 范业赓 何洁 黄芳 莫磊兴 《Agricultural Science & Technology》 CAS 2017年第12期2378-2382,共5页
[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentr... [Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees. 展开更多
关键词 SUGARCANE CD soil microbial quantity soil enzyme activity
下载PDF
Impact of Transgenic Bt+CpTI Cotton on Soil Enzyme Activities and Soil Microorganisms
17
作者 刘红梅 宋晓龙 +3 位作者 皇甫超河 张贵龙 杨殿林 赵建宁 《Agricultural Science & Technology》 CAS 2013年第11期1610-1614,1619,共6页
Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important pa... Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton. 展开更多
关键词 Transgenic Bt+CpTI cotton Growth stage soil enzyme activities soil microorganisms
下载PDF
Variation of Enzyme Activity in Flue-cured Tobacco-growing Soil Planted with Different Lastseason Crops
18
作者 毛振萍 冯成恩 +5 位作者 周冀衡 向炳清 吴春发 邓蓓蕾 刘红 王婧 《Agricultural Science & Technology》 CAS 2014年第10期1719-1722,1769,共5页
The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with diff... The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities. 展开更多
关键词 Flue-cured tobacco soil type soil enzyme activity Growth of flue-cured tobacco
下载PDF
Dynamic Study of Microbial Population and Enzyme Activity in Rhizosphere Soil of Allium sativum L.
19
作者 周艳丽 王艳 +1 位作者 李金英 薛艳杰 《Agricultural Science & Technology》 CAS 2010年第9期140-143,共4页
[Objective] The aim was to investigate the changes in microbial population and soil enzyme activities in rhizosphere soil of two cultivars of Allium sativum L.at different growth stages.[Method]By using white garlic a... [Objective] The aim was to investigate the changes in microbial population and soil enzyme activities in rhizosphere soil of two cultivars of Allium sativum L.at different growth stages.[Method]By using white garlic and purple garlic as the experimental materials,the microbial population,and the activities of urease,acid phosphatase and catalase in their rhizosphere soil at different growth stages were measured.[Result]The root exudates of the two garlic cultivars could promote the growth of bacteria,fungi and actinomycetes,and indirectly increase the urease,acid phosphatase and catalase activities in the rhizosphere soil,thereby improving the turnover and circulation of the soil nutrition elements such as nitrogen and phosphorus,and providing a better micro-ecological environment for the later crop.[Conclusion]The study had provided theoretical basis for the ecological research on garlic used as a preceding crop. 展开更多
关键词 Allium sativum L. soil microbial population soil enzyme
下载PDF
Effect of Combined Application of Manure and Chemical Fertilizer on the Dynamic Changes of Purple Soil Nutrient and Soil Enzyme Activities
20
作者 施娴 袁玲 《Agricultural Science & Technology》 CAS 2011年第5期765-767,775,共4页
[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertil... [Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer. 展开更多
关键词 MANURE soil nutrients soil enzyme activities Dynamic changes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部