Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to...Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(>25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s^(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s^(-1)) and sediment concentrationrates(up to 1538.6 g l^(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.展开更多
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c...In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.展开更多
Sand-fflled splash cups were used to study the erosive power of rainfall and throughfall in the humid subtropics of Southeast China. The splash cup measurements yielded precise and reproducible results under both open...Sand-fflled splash cups were used to study the erosive power of rainfall and throughfall in the humid subtropics of Southeast China. The splash cup measurements yielded precise and reproducible results under both open field conditions and forest vegetation. The splash cups were exposed to specific forest stands of different ages and to selected species (Schima superba, Castanopsis eyrei, Daphniphyllum oldhamii, Lithocarpus glaber) in the Gutianshan (古田山) National Nature Reserve (GNNR). The results of the measurements under forest vegetation show that the erosive power of throughfall drops to be 2.59 times higher compared to the open field. This accentuates the importance of shrub, herb and litter layers in forest ecosystems to protect the soil against erosion. Coalescing drops from leaves and branches (drips) are responsible for this notable gain in erosive power. Moreover, differences in sandloss between the investigated tree species (deciduous, evergreen) revealed that the erosion potential and the spatial heterogeneity of throughfall are species-specific. This highlights the importance of selecting specific species for afforestation projects considering the prevention of soil erosion.展开更多
文摘Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(>25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s^(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s^(-1)) and sediment concentrationrates(up to 1538.6 g l^(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.
基金supported by Key Program of National Natural Science Foundation of China(Grant No. 41130744)China National Natural Science Foundation (Grant No. 40971165)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau open Foundation(Grant No. 10501-1220)
文摘In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.
基金supported by the Deutsche Forschungsgemein-schaft (German Science Foundation) (No. DFG FOR 891/1)the National Natural Science Foundation of China (Nos. 30710103907, 30930005)
文摘Sand-fflled splash cups were used to study the erosive power of rainfall and throughfall in the humid subtropics of Southeast China. The splash cup measurements yielded precise and reproducible results under both open field conditions and forest vegetation. The splash cups were exposed to specific forest stands of different ages and to selected species (Schima superba, Castanopsis eyrei, Daphniphyllum oldhamii, Lithocarpus glaber) in the Gutianshan (古田山) National Nature Reserve (GNNR). The results of the measurements under forest vegetation show that the erosive power of throughfall drops to be 2.59 times higher compared to the open field. This accentuates the importance of shrub, herb and litter layers in forest ecosystems to protect the soil against erosion. Coalescing drops from leaves and branches (drips) are responsible for this notable gain in erosive power. Moreover, differences in sandloss between the investigated tree species (deciduous, evergreen) revealed that the erosion potential and the spatial heterogeneity of throughfall are species-specific. This highlights the importance of selecting specific species for afforestation projects considering the prevention of soil erosion.