Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg...Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.展开更多
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of south...The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.展开更多
The Wangdonggou Watershed on the Loess Plateau in China was selected as the study area to develop a model for soil erosion assessments. Using the data collected at 20 sampling sites all tentatively selected indicators...The Wangdonggou Watershed on the Loess Plateau in China was selected as the study area to develop a model for soil erosion assessments. Using the data collected at 20 sampling sites all tentatively selected indicators were assessed against their corresponding erosion intensity through a correlation analysis. Eight highly correlated indicators were then chosen for the soil erosion assessment. In addition, threshold limits to delineate the class size for these indicators and weights to rank them were determined. Next, a grading model incorporating the selected indicators class rating and their associated weights was developed and verified by an on site evaluation of the soil erosion intensity in the study area. Results of the verification showed that the overall accuracy of the indicator system for assessing soil erosion in the Loess Plateau gully regions could reach 85%.展开更多
Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climat...Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climatic stress, and soil erosion were conducted from 1998 to 2001 in a newly developed Changshan-huyou (Citrus changshan-huyou Y.B. Chang) orchard. The experimental area covered 150 ha in typical red soil hilly region in southeastern China. The experimental design was a randomized complete block with six combinations of twelve plant species with four replications. All species used were native in the orchard. Plots were 15×8m^2 and separated by 2m buffer strips. Precipitation, soil erosion in rainstorm days and aboveground biomass of plant community when rainstorm days ended, soil temperature and moisture under various plant covers during seasonal megathermal drought period, antiscourability of soil with different root density under various simulated rainfalls were measured. Plant cover significantly decreased the daily highest and mean soil temperature and its daily variation in hot-drought season, but there was no significant difference of the alleviation among various plant covers. Plant covers significantly increased the soil moisture in seasonal megathermal drought period. Better moisture maintenance and soil erosion reduction was found when the plant species numbers in cover plant communities increased from one to eight. Higher root density in plant communities with higher species richness increased significantly the antiscourability of the soil. It was suggested that conserving plant communities with diversified native species could produce the best positive ecological effects on citrus orchard ecosystem stability.展开更多
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu...Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Further...The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future.展开更多
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c...Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.展开更多
This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions...This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.展开更多
Biochar has emerged as a promising soil amendment for improving soil structure.Yet,its impact on rainfall-induced soil erosion varies across individual studies.To address this gap,we conducted a statistical meta-analy...Biochar has emerged as a promising soil amendment for improving soil structure.Yet,its impact on rainfall-induced soil erosion varies across individual studies.To address this gap,we conducted a statistical meta-analysis of 174 paired comparisons from 45 published studies to integratedly evaluate the impacts of biochar on rainfall-induced soil erosion through biochar and soil properties,as well as experimental conditions.Overall,biochar significantly reduced soil erosion by 27.86%.The response ratio(lnRR)of biochar-induced soil erosion exhibited significant variability across different subgroups.Concerning biochar properties,a more favorable influence was observed in other sources biochar(e.g.,manure and sewage sludge biochar)compared to wood based and crop waste biochar,and those produced at lower pyrolysis temperatures(<500°C).Increasing biochar dosage was not consistently effective.The optimal range was 0.8%–2%,resulting in a 36.07%reduction in soil erosion.Regarding the soil properties,a higher sand/clay ratio of soil significantly enhanced the performance of biochar(p<0.0001).Specifically,an insignificant effect was observed in fine-grained soils,whereas the highest reduction of 52.97%was noted in coarse-grained soils.Moreover,long-term field experiments induced greater reductions in soil erosion with biochar(35.30%)compared to short-term laboratory studies(29.62%and 12.59%).This meta-analysis demonstrates that biochar,as a potential soil amendment,could effectively mitigate rainfall-induced soil erosion by considering a combination of soil properties along with specific biochar properties.展开更多
Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results ...Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.展开更多
The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns...The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland.展开更多
[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil o...[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.展开更多
In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,a...In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,and some results are concluded. The water erosion occurs in High Mountain and extra-high mountain of Yushu,Nangqian,Banma and Jiuzhi County in the southeast and south of the Three-River Headwaters region. The degree of erosion is prone to topography,precipitation,river and human activity. The freeze-thaw erosion mainly distributes in the northwest of the Three-River Headwaters region. The area of middle and above middle erosion degree accounts for roughly 50%.展开更多
Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of compreh...Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.展开更多
In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore prin...In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore principles of pipeline prevention and seek countermeasures.展开更多
The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distri...The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.展开更多
[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion o...[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.展开更多
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff...Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.展开更多
Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs ref...Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived ^137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four ^137Cs models and percentage of ^137Cs loss/gain. The ^137Cs reference value in the study area was 2 232.8 Bq m^-2 with ^137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope, Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor and distribution pattern of ^137Cs in the surface layer demonstrated the impact of ^137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout ^137Cs in landscape should be fully considered as calculating soil redistribution rate using ^137Cs technique.展开更多
基金the financial support received from the University Grants Commission (UGC) in the form of a Junior Research Fellowship (JRF)。
文摘Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No.2002CB410807).
文摘The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.
基金supported by the State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, China (No. 10501-88) the National High Technology Research and Development Program of China (863 Program) (No. 2001AA245041).
文摘The Wangdonggou Watershed on the Loess Plateau in China was selected as the study area to develop a model for soil erosion assessments. Using the data collected at 20 sampling sites all tentatively selected indicators were assessed against their corresponding erosion intensity through a correlation analysis. Eight highly correlated indicators were then chosen for the soil erosion assessment. In addition, threshold limits to delineate the class size for these indicators and weights to rank them were determined. Next, a grading model incorporating the selected indicators class rating and their associated weights was developed and verified by an on site evaluation of the soil erosion intensity in the study area. Results of the verification showed that the overall accuracy of the indicator system for assessing soil erosion in the Loess Plateau gully regions could reach 85%.
基金Projects (Nos. 30228005, 39870143 and 30030030) supported by the National Natural Science Foundation of China Author for correspondence
文摘Naturally occurring plants in agroecosystem evidently play an important role in ecosystem stability. Field studies on the ecological effects of native plants conserved in orchard and their resistance to adverse climatic stress, and soil erosion were conducted from 1998 to 2001 in a newly developed Changshan-huyou (Citrus changshan-huyou Y.B. Chang) orchard. The experimental area covered 150 ha in typical red soil hilly region in southeastern China. The experimental design was a randomized complete block with six combinations of twelve plant species with four replications. All species used were native in the orchard. Plots were 15×8m^2 and separated by 2m buffer strips. Precipitation, soil erosion in rainstorm days and aboveground biomass of plant community when rainstorm days ended, soil temperature and moisture under various plant covers during seasonal megathermal drought period, antiscourability of soil with different root density under various simulated rainfalls were measured. Plant cover significantly decreased the daily highest and mean soil temperature and its daily variation in hot-drought season, but there was no significant difference of the alleviation among various plant covers. Plant covers significantly increased the soil moisture in seasonal megathermal drought period. Better moisture maintenance and soil erosion reduction was found when the plant species numbers in cover plant communities increased from one to eight. Higher root density in plant communities with higher species richness increased significantly the antiscourability of the soil. It was suggested that conserving plant communities with diversified native species could produce the best positive ecological effects on citrus orchard ecosystem stability.
基金The authors extend their appreciation to Researchers Supporting Project number(RSP2024R390),King Saud University,Riyadh,Saudi Arabia.
文摘Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
文摘The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future.
基金supported by the National Natural Science Foundation of China (41201441,41371363,41301501)Foundation of Director of Institute of Remote Sensing and Digital Earth,Chinese Academy of Science (Y4SY0200CX)Guangxi Key Laboratory of Spatial Information and Geomatics (1207115-18)
文摘Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.
文摘This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.
基金supported by the National Natural Science Foundation of China(Program No.42277124)the Jiangsu Province 333 Talents Youth Talent Support Project.
文摘Biochar has emerged as a promising soil amendment for improving soil structure.Yet,its impact on rainfall-induced soil erosion varies across individual studies.To address this gap,we conducted a statistical meta-analysis of 174 paired comparisons from 45 published studies to integratedly evaluate the impacts of biochar on rainfall-induced soil erosion through biochar and soil properties,as well as experimental conditions.Overall,biochar significantly reduced soil erosion by 27.86%.The response ratio(lnRR)of biochar-induced soil erosion exhibited significant variability across different subgroups.Concerning biochar properties,a more favorable influence was observed in other sources biochar(e.g.,manure and sewage sludge biochar)compared to wood based and crop waste biochar,and those produced at lower pyrolysis temperatures(<500°C).Increasing biochar dosage was not consistently effective.The optimal range was 0.8%–2%,resulting in a 36.07%reduction in soil erosion.Regarding the soil properties,a higher sand/clay ratio of soil significantly enhanced the performance of biochar(p<0.0001).Specifically,an insignificant effect was observed in fine-grained soils,whereas the highest reduction of 52.97%was noted in coarse-grained soils.Moreover,long-term field experiments induced greater reductions in soil erosion with biochar(35.30%)compared to short-term laboratory studies(29.62%and 12.59%).This meta-analysis demonstrates that biochar,as a potential soil amendment,could effectively mitigate rainfall-induced soil erosion by considering a combination of soil properties along with specific biochar properties.
基金Partly supported by Postdoctoral Foundation of China (No.24) and the National Natural Science Foundation of China (No. 39900084)
文摘Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.
文摘The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland.
文摘[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.
文摘In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,and some results are concluded. The water erosion occurs in High Mountain and extra-high mountain of Yushu,Nangqian,Banma and Jiuzhi County in the southeast and south of the Three-River Headwaters region. The degree of erosion is prone to topography,precipitation,river and human activity. The freeze-thaw erosion mainly distributes in the northwest of the Three-River Headwaters region. The area of middle and above middle erosion degree accounts for roughly 50%.
文摘Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.
基金Supported by Scientific Research Program of Water Resources Department of the Xinjiang Uygur Autonomous Region (xjsl-2011-11)Young Core Project of Northwest A&F University (KZCXI-10-4-1)~~
文摘In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore principles of pipeline prevention and seek countermeasures.
基金Supported by National Science and Technology Support Program in Twelfth Five-year Plan(2012BAD05B06)Special Funds for Excellent Young Scientific Talents in Guizhou[(2011)14]~~
文摘The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.
基金Supported by the Special Fund of International Plant Nutrition Institute Fund (NMS-Yunnan200801)~~
文摘[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field.
基金Project supported by the Chinese Academy of Sciences (No. KZCX3-SW-422) and the National Natural Science Foundation of China (Nos. 9032001 and 40335050).
文摘Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.
基金Project supported by the Hundred Talents Program of Chinese Academy of Sciences (No. K09Z3) the National Natural Science Foundation of China (Nos. 40271108 and 40471125).
文摘Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived ^137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four ^137Cs models and percentage of ^137Cs loss/gain. The ^137Cs reference value in the study area was 2 232.8 Bq m^-2 with ^137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope, Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor and distribution pattern of ^137Cs in the surface layer demonstrated the impact of ^137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout ^137Cs in landscape should be fully considered as calculating soil redistribution rate using ^137Cs technique.