Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soi...Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% 【 CV 【 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) 【 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic effects on soil heterogeneity suggested significant differences between the interdunes and dune-tops. Different topographic characteristics (physical factors) between plots result in the differences in SOC, AN and AP, while the heterogeneity of soil pH and EC arise from plant species and their distribution (biotic factor). Such biotic and physical factors did not occur in isolation, but worked together on soil heterogeneity, and played important parts in improving the soil properties. Hence these factors were ecologically valuable in the highly resource-stressed arid study area.展开更多
Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns ...Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.展开更多
Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scannin...Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.展开更多
Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique...Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique,it has not seen widespread implement-ation in China.Considering the deteriorating quality of arable lands in the Black Soil Region of Northeast China(BSR-NEC),it is ne-cessary to investigate spatial patterns and identify suitable areas for contour farming in this region.To achieve this objective,spatial autocorrelation and grouping analysis methods were employed to classify the land into four categories of suitability for contour farming:highly suitable,moderately suitable,generally suitable,and unsuitable.The results reveal that:1)the contour farming suitable area in BSR-NEC covers 89861.32 km^(2),accounting for 21.59%of arable land as of 2020.Heilongjiang Province owns the largest suitable area of 32853.68 km^(2),and Inner Mongolia has the highest proportion of 28.89%.2)In terms of the spatial distribution,regions with higher suitability for contour farming are concentrated in the Da Hinggan Mountains region,particularly Nenjiang City(Heilongjiang Province),which has the highest area of 2593.07 km^(2).Areas with a high proportion of suitable arable lands for contour farming are mainly found in the Da Hinggan Mountains and Changbai Mountains regions,with Ergun City(Inner Mongolia)having the highest pro-portion at 47.2%.Regions with higher suitability and proportion are concentrated in the Da Hinggan Mountains region,primarily cover-ing the Inner Mongolia and Heilongjiang.3)Regarding spatial clustering,both the area and proportion of suitable contour farming areas exhibit noticeable clustering effects,though not entirely consistent.4)Group analysis results designate 148 counties in BSR-NEC as highly suitable areas,predominantly located in the Changbai Mountains region,Liaodong Peninsula,Hulun Buir Plateau,and the north and south regions of the Da Hinggan Mountains.The zoning of suitable areas for contour farming in BSR-NEC informs the strategic de-velopment of policies and measures,allowing for the implementation of targeted policies in distinct areas suitable for contour farming.This provides a valuable reference for promoting contour farming technology more effectively and efficiently.re effectively and effi-ciently.展开更多
Soil nitrogen(N) is critical to ecosystem services and environmental quality. Hotspots of soil N in areas with high soil moisture have been widely studied, however, their spatial distribution and their linkage with so...Soil nitrogen(N) is critical to ecosystem services and environmental quality. Hotspots of soil N in areas with high soil moisture have been widely studied, however, their spatial distribution and their linkage with soil N variation have seldom been examined at a catchment scale in areas with low soil water content. We investigated the spatial variation of soil N and its hotspots in a mixed land cover catchment on the Chinese Loess Plateau and used multiple statistical methods to evaluate the effects of the critical environmental factors on soil N variation and potential hotspots. The results demonstrated that land cover, soil moisture, elevation, plan curvature and flow accumulation were the dominant factors affecting the spatial variation of soil nitrate(NN), while land cover and slope aspect were the most important factors impacting the spatial distribution of soil ammonium(AN) and total nitrogen(TN). In the studied catchment, the forestland, gully land and grassland were found to be the potential hotspots of soil NN, AN and TN accumulation, respectively. We concluded that land cover and slope aspect could be proxies to determine the potential hotspots of soil N at the catchment scale. Overall, land cover was the most important factor that resulted in the spatial variations of soil N. The findings may help us to better understand the environmental factors affecting soil N hotspots and their spatial variation at the catchment scale in terrestrial ecosystems.展开更多
Accessibility to organic carbon(OC) budget is required for sustainable agricultural development and ecosystem preservation and restoration. Using geostatistical models to describe and demonstrate the spatial variabili...Accessibility to organic carbon(OC) budget is required for sustainable agricultural development and ecosystem preservation and restoration. Using geostatistical models to describe and demonstrate the spatial variability of soil organic carbon(SOC) will lead to a greater understanding of this dynamics. The aim of this paper is to present the relationships between the spatial variability of SOC and the topographic features by using geostatistical methods on a loess mountain-slope in Toshan region, Golestan Province, northern Iran. Hence, 234 soil samples were collected in a regular grid that covered different parts of the slope. The results showed that such factors as silt, clay, saturated moisture content, mean weighted diameter(MWD) and bulk density were all correlated to the OC content in different slope positions, and the spatial variability of SOC more to slope positions and elevations. The coefficient of variation(CV) indicated that the variability of SOC was moderate in different slope positions and for the mountain-slope as a whole. However, the higher variability of SOC(CV = 45.6%) was shown in the back-slope positions. Also, the ordinary cokriging method for clay as covariant gave better results in evaluating SOC for the whole slope with the RMSE value 0.2552 in comparison with the kriging and the inverse distance weighted(IDW) methods. The interpolation map of OC for the slope under investigation showed lowering SOC concentrations versus increasing elevation and slope gradient. The spatial correlation ratio was different between various slope positions and related to the topographic texture.展开更多
Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at ...Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in a temperate forest. The spatial variation of soil water content was higher during dry conditions than that during wet conditions. Results indicated 3.1 samples at the plot scale were sufficient to estimate mean soil water content when the precision was 0.1. Soil water content increased with increasing topographic index (TI) and soil-topographic index (STI) at the small catchment scale. The correlation between soil water content and TI was higher than that between soil water content and STI. This suggests that topography is more important for estimating surface soil moisture than soil depth as formation of surface soil moisture occurs at ≤6 cm.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
The spatial heterogeneity of DTPA-extractable zinc in the cultivated soils of Shenyang suburbs in Liaoning Province of China was investigated, and its map was drawn by the methods of geostatistics combined with geogra...The spatial heterogeneity of DTPA-extractable zinc in the cultivated soils of Shenyang suburbs in Liaoning Province of China was investigated, and its map was drawn by the methods of geostatistics combined with geographic information system. The data of soil DTPA-extractable zinc fitted normal distribution after logarithm transformation, and its semivariogram fitted a spherical model. The semivariogram indicated that the spatial dependence of soil DTPA-extractable zinc content was moderate, with the spatial dependence range of 1.69 km and the fractal dimension of 1.96. Stochastic factors contributed to 49.9% of the spatial variability, while structural factors contributed to 50.1% of it. The spatial heterogeneity of soil DTPA-extractable zinc shown by a kriged interpolation map was deeply influenced by stochastic factors such as city pollution, land use pattern and crop distributions. For example, the average content of Zn in vegetable garden soils was 2.5-4 times as much as in their originated soils, and was lower in paddy soils than in their originated soils. The areas with a higher content of soil DTPA-extractable zinc appeared in the near suburbs and the riverside along Hunhe River and the wastewater drainage of Xihe River, and the extremely high values in the near suburb of the city's residential area were a striking feature, indicating the key role of city pollution in the spatial heterogeneity of soil DTPA-extractable zinc. When recorded in the form of a soil pollution map,the results of such a survey make it possible to identify the unusually polluted areas, and to provide more information for precise agriculture and environmental control.展开更多
Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in...Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in a plant community dominated by Artemisia ordosica, located on the eastern boundary of Tcngger Desert in the Alxa League, Inner Mongolia, China, were studied to understand whether OM was directly involved in the formation of pedogenic carbonate. The results showed that DHA and CuCO3 positively correlated with OM content, and DHA, OM, and CaCO3 were correlated with each other in their spatial distribution, indicating that abundant OM content contributed to the formation of CaCO3. Therefore, the formation of pedogenic CaCO3 was a biotic process in the plant community dominated by A. ordosica.展开更多
Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that...Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that soil was contaminated heavily withmetal(loid)s.The mean of lead(Pb),arsenic(As),cadmium(Cd),mercury(Hg)and antimony(Sb)content in topsoil is 9.7,8.2,5.0,2.3,and 1.2 times higher than the risk screening value for soil contamination of development land of China(GB36600-2018),respectively.Cd ismainly enriched in the 0–6mdepth of site soil while As and Pbmainly deposited in the 0–4mlayer.The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter.As,Hg,Sb,Pb and copper(Cu)were mainly distributed in pyrometallurgical area,while Cd,thallium(Tl)and zinc(Zn)was mainly existed in both hydrometallurgical area and raw material storage area.Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources,accounting for 84.5%.Specifically,Pb,Tl,As,Hg,Sb and Cumainly from atmospheric deposition(55.9%),Cd and Zn mainly from surface runoff(28.6%),While nickel(Ni)mainly comes from parent material(15.5%).The results clarified the spatial distribution and their sources in different functional areas of the smelter,providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.展开更多
Village landscapes, which integrate small-scMe agriculture with housing, forestry, and a host of other land use practices, cover more than 2 million square kilometers across China. Village lands tend to be managed at ...Village landscapes, which integrate small-scMe agriculture with housing, forestry, and a host of other land use practices, cover more than 2 million square kilometers across China. Village lands tend to be managed at very fine spatial scales (≤ 30 m), with managers both adapting their practices to existing variation in soils and terrain (e.g., fertile plains vs. infertile slopes) and also altering soil fertility and even terrain by terracing, irrigation, fertilizing, and other land use practices. Relationships between fine-scale land management patterns and soil organic carbon (SOC) in the top 30 cm of village soils were studied by sampling soils within fine-scale landscape features using a regionally weighted landscape sampling design across five environmentally distinct sites in China. SOC stocks across China's village regions (5 Pg C in the top 30 cm of 2 ×10^6 km^2) represent roughly 4% of the total SOC stocks in global croplands. Although macroclimate varied from temperate to tropical in this study, SOC density did not vary significantly with climate, though it was negatively correlated with regional mean elevation. The highest SOC densities within landscapes were found in agricultural lands, especially paddy, the lowest SOC densities were found in nonproductive lands, and forest lands tended toward moderate SOC densities. Bue to the high SOC densities of agricultural lands and their predominance in village landscapes, most village SOC was found in agricultural land, except in the tropical hilly region, where forestry accounted for about 45% of the SOC stocks. A surprisingly large portion of village SOC was associated with built structures and with the disturbed lands surrounding these structures, ranging from 〉 18% in the North China Plain to about 9% in the tropical hilly region. These results confirmed that local land use practices, combined with local and regional variation in terrain, were associated with most of the SOC variation within and across China's village landscapes and may be an important cause of regional variation in SOC.展开更多
Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower...Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower richness.This is because there is niche differentiation among species and different species can complement each other and occupy a broader range of niches when plant species richness is high.However,no study has tested how soil particle heterogeneity affects the yield of plant communities,and whether such effects depend on the spatial scale of the heterogeneity and the species richness within the communities.Methods In a greenhouse experiment,we sowed seeds of four-species or eight-species mixtures in three heterogeneous treatments consisting of 32,8 or 2 patches of both small(1.5 mm)and large quartz(3.0 mm)particles arranged in a chessboard manner and one homogeneous treatment with an even mixture of small and large quartz particles.Important Findings Biomass production was significantly greater in the communities with high species richness than those with low species richness.However,soil particle heterogeneity or its interactions with patch scale or species richness did not significantly affect biomass production of the experimental communities.This work indicates that plant species richness may have a bigger impact on plant productivity than soil particle heterogeneity.Further studies should consider multiple sets of plant species during longer time periods to unravel the potential mechanisms of soil heterogeneity and its interactions with the impacts of species richness on community yield and species coexistence.展开更多
After the analysis on the linages of species, the fractal dimensions of vegetation and soil in a managed larch(Larix gmelini) forest in Daxingan Mountains, NE China were estimated separately, and their scale correlati...After the analysis on the linages of species, the fractal dimensions of vegetation and soil in a managed larch(Larix gmelini) forest in Daxingan Mountains, NE China were estimated separately, and their scale correlation was discussed. (1) The dominant species of the larch forest, larch and the important accompany species, birch (Betula platyphylla) were homogeneously distributed along the transect. The other species were heterogeneous, and can be divided into three groups located on the right, left and central parts of the transect respectively. The transect can be separated into two parts at the position for the 29th quadrat(580m). (2) The fractal dimension in the large scale range from 200 to 400m was lower than that in the small scale range from 0 to 200m in the forest, indicating the different variation regularities of spatial heterogeneity in different scale ranges. The inflection point at 200m was one of the key scales of spatial hierarchy of the larch forest. (3) The scale variation of the forest was correlated with that of soil pH on large scales, which reflected the indirect control of the dominant species to the spatial pattern and species distribution of understorey by changing soil acidity in the forest and the indirect effects of forest management.展开更多
The vegetation spatial heterogeneity and ecological characteristics in different soil regions were analyzed by surveying the vegetation in 12 different soil regions of Inner Mongolia, China, including coniferous-broad...The vegetation spatial heterogeneity and ecological characteristics in different soil regions were analyzed by surveying the vegetation in 12 different soil regions of Inner Mongolia, China, including coniferous-broadleaf deciduous forests, shrub, grassland, and desert regions with 1122 large 2 cm × 2 cm quadrats (actual size 30 km × 30 km, referred to as L-quadrat hereafter) in about 1.18 million km2. Each L-quadrat was divided into four small 1 cm × 1 cm quadrats (actual size 15 km × 15 km, S-quadrat). The vegetation was analyzed based on the beta-binomial distribution to describe the frequency of occurrence and spatial heterogeneity for each kind of vegetation. The weighted average of the heterogeneity of all vegetation in the same soil region provides a measure of the soil regional landscape level heterogeneity which describes the spatial complexity of the regional landscape composition of the existing vegetation. Comparison of the vegetation characteristics in the 12 soil regions shows that, the calcic gray soil has the highest average vegetation type per quadrat. The largest soil region is calcic chestnut soil and has the most vegetation types. Every soil region has its own dominant vegetation sequence which dominates in occurrence and dominant vegetation types which dominates in spatial heterogeneity. For the Inner Mongolian vegetation, the weighted average of the heterogeneity is 0.60 and the vegetation diversity index is 4.47.展开更多
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia...Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate.展开更多
土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点...土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点的土壤-表层岩溶带厚度及环境因子数据资料,研究了土壤和表层岩溶带厚度的空间分布格局及其影响因素。结果表明,土壤和表层岩溶带厚度平均值分别为1.15 m和6.44 m,且分别呈现强变异程度和中等变异程度。地统计分析结果表明球状模型和指数模型分别可以反映土壤和表层岩溶带的空间结构特征。土壤厚度呈现中等空间自相关性,变程长,空间连续性好;而表层岩溶带呈现强烈的空间自相关性,变程短,空间依赖性强。土壤厚度受到环境因子(地形湿度指数、垂直曲率、曲率、坡向、坡度、高程、覆盖度、出露基岩率和植被归一化指数)的多重影响,而表层岩溶带厚度受部分环境因子影响的同时,与土壤厚度和植被类型的相关性更高。研究结果有助于喀斯特区土壤-表层岩溶带演化机理认识,并为土壤-表层岩溶带厚度的空间预测提供科学依据。展开更多
基金supported by the National Natural Science Foundation of China (40701187)the Western Light Project of the Chinese Academy of Sciences (XBBS200808)
文摘Spatial heterogeneity is a ubiquitous feature in natural ecosystems, especially in arid regions. Different species and their discontinuous distribution, accompanied by varied topographic characteristics, result in soil resources distributed differently in different locations, and present significant spatial heterogeneity in desert ecosystems. In this study, conventional and geostatistical methods were used to identify the heterogeneity of soil chemical properties in two desert populations, Haloxylon persicum Bunge ex Boss., which dominates on the slopes and tops of sand dunes and Haloxylon ammodendron (C. A. Mey.) Bunge, which inhabits interdunes in the Gurbantunggut Desert of Xinjiang, China. The results showed that soil pH, electrical conductivity (EC), soil organic carbon (SOC), available nitrogen (AN) and available phosphorus (AP) were significantly higher in H. ammodendron populations than that in H. persicum. The coefficient of variation (CV) indicated that (1) most parameters presented a moderate degree of variability (10% 【 CV 【 100%) except pH in both plots, (2) the variability of soil pH, EC and AP in H. ammodendron populations was higher than that in H. persicum populations, and (3) SOC and AN in H. ammodendron populations were lower than that in H. persicum populations. Geostatistical analysis revealed a strong spatial dependence (C0/(C0+C) 【 25%) within the distance of ranges for all tested parameters in both plots. The Kriging-interpolated figures showed that the soil spatial distribution was correlated with the vegetation distribution, individual size of plants, and the topographic features, especially with the plants nearest to sampling points and the topographic features. In each plot, soil EC, SOC, AN and AP presented similar distributions, and fertile islands and salt islands occurred in both plots but did not affect every individual plant, since the sampling distance was larger than the size of such fertile islands. The results of topographic effects on soil heterogeneity suggested significant differences between the interdunes and dune-tops. Different topographic characteristics (physical factors) between plots result in the differences in SOC, AN and AP, while the heterogeneity of soil pH and EC arise from plant species and their distribution (biotic factor). Such biotic and physical factors did not occur in isolation, but worked together on soil heterogeneity, and played important parts in improving the soil properties. Hence these factors were ecologically valuable in the highly resource-stressed arid study area.
基金supported by the National Natural Science Foundation of China(Grant No.32001324,32071777)Youth Lift Project of China Association for Science and Technology(Grant No.YESS20210370)Heilongjiang Province Outstanding Youth Joint Guidance Project(No.LH2021C012).
文摘Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.
文摘Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.
基金Under the auspices of National Key R&D Program of China(No.2021YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28100400)。
文摘Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique,it has not seen widespread implement-ation in China.Considering the deteriorating quality of arable lands in the Black Soil Region of Northeast China(BSR-NEC),it is ne-cessary to investigate spatial patterns and identify suitable areas for contour farming in this region.To achieve this objective,spatial autocorrelation and grouping analysis methods were employed to classify the land into four categories of suitability for contour farming:highly suitable,moderately suitable,generally suitable,and unsuitable.The results reveal that:1)the contour farming suitable area in BSR-NEC covers 89861.32 km^(2),accounting for 21.59%of arable land as of 2020.Heilongjiang Province owns the largest suitable area of 32853.68 km^(2),and Inner Mongolia has the highest proportion of 28.89%.2)In terms of the spatial distribution,regions with higher suitability for contour farming are concentrated in the Da Hinggan Mountains region,particularly Nenjiang City(Heilongjiang Province),which has the highest area of 2593.07 km^(2).Areas with a high proportion of suitable arable lands for contour farming are mainly found in the Da Hinggan Mountains and Changbai Mountains regions,with Ergun City(Inner Mongolia)having the highest pro-portion at 47.2%.Regions with higher suitability and proportion are concentrated in the Da Hinggan Mountains region,primarily cover-ing the Inner Mongolia and Heilongjiang.3)Regarding spatial clustering,both the area and proportion of suitable contour farming areas exhibit noticeable clustering effects,though not entirely consistent.4)Group analysis results designate 148 counties in BSR-NEC as highly suitable areas,predominantly located in the Changbai Mountains region,Liaodong Peninsula,Hulun Buir Plateau,and the north and south regions of the Da Hinggan Mountains.The zoning of suitable areas for contour farming in BSR-NEC informs the strategic de-velopment of policies and measures,allowing for the implementation of targeted policies in distinct areas suitable for contour farming.This provides a valuable reference for promoting contour farming technology more effectively and efficiently.re effectively and effi-ciently.
基金financially supported by the National key research and development program (2017YFD0800502)the National Natural Science Foundation of China (Grant Nos. 41573067, 41790444, 41471189, 31700414)
文摘Soil nitrogen(N) is critical to ecosystem services and environmental quality. Hotspots of soil N in areas with high soil moisture have been widely studied, however, their spatial distribution and their linkage with soil N variation have seldom been examined at a catchment scale in areas with low soil water content. We investigated the spatial variation of soil N and its hotspots in a mixed land cover catchment on the Chinese Loess Plateau and used multiple statistical methods to evaluate the effects of the critical environmental factors on soil N variation and potential hotspots. The results demonstrated that land cover, soil moisture, elevation, plan curvature and flow accumulation were the dominant factors affecting the spatial variation of soil nitrate(NN), while land cover and slope aspect were the most important factors impacting the spatial distribution of soil ammonium(AN) and total nitrogen(TN). In the studied catchment, the forestland, gully land and grassland were found to be the potential hotspots of soil NN, AN and TN accumulation, respectively. We concluded that land cover and slope aspect could be proxies to determine the potential hotspots of soil N at the catchment scale. Overall, land cover was the most important factor that resulted in the spatial variations of soil N. The findings may help us to better understand the environmental factors affecting soil N hotspots and their spatial variation at the catchment scale in terrestrial ecosystems.
基金Gorgan University of Agricultural Sciences and Natural Resources for the support of this study
文摘Accessibility to organic carbon(OC) budget is required for sustainable agricultural development and ecosystem preservation and restoration. Using geostatistical models to describe and demonstrate the spatial variability of soil organic carbon(SOC) will lead to a greater understanding of this dynamics. The aim of this paper is to present the relationships between the spatial variability of SOC and the topographic features by using geostatistical methods on a loess mountain-slope in Toshan region, Golestan Province, northern Iran. Hence, 234 soil samples were collected in a regular grid that covered different parts of the slope. The results showed that such factors as silt, clay, saturated moisture content, mean weighted diameter(MWD) and bulk density were all correlated to the OC content in different slope positions, and the spatial variability of SOC more to slope positions and elevations. The coefficient of variation(CV) indicated that the variability of SOC was moderate in different slope positions and for the mountain-slope as a whole. However, the higher variability of SOC(CV = 45.6%) was shown in the back-slope positions. Also, the ordinary cokriging method for clay as covariant gave better results in evaluating SOC for the whole slope with the RMSE value 0.2552 in comparison with the kriging and the inverse distance weighted(IDW) methods. The interpolation map of OC for the slope under investigation showed lowering SOC concentrations versus increasing elevation and slope gradient. The spatial correlation ratio was different between various slope positions and related to the topographic texture.
文摘Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in a temperate forest. The spatial variation of soil water content was higher during dry conditions than that during wet conditions. Results indicated 3.1 samples at the plot scale were sufficient to estimate mean soil water content when the precision was 0.1. Soil water content increased with increasing topographic index (TI) and soil-topographic index (STI) at the small catchment scale. The correlation between soil water content and TI was higher than that between soil water content and STI. This suggests that topography is more important for estimating surface soil moisture than soil depth as formation of surface soil moisture occurs at ≤6 cm.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
文摘The spatial heterogeneity of DTPA-extractable zinc in the cultivated soils of Shenyang suburbs in Liaoning Province of China was investigated, and its map was drawn by the methods of geostatistics combined with geographic information system. The data of soil DTPA-extractable zinc fitted normal distribution after logarithm transformation, and its semivariogram fitted a spherical model. The semivariogram indicated that the spatial dependence of soil DTPA-extractable zinc content was moderate, with the spatial dependence range of 1.69 km and the fractal dimension of 1.96. Stochastic factors contributed to 49.9% of the spatial variability, while structural factors contributed to 50.1% of it. The spatial heterogeneity of soil DTPA-extractable zinc shown by a kriged interpolation map was deeply influenced by stochastic factors such as city pollution, land use pattern and crop distributions. For example, the average content of Zn in vegetable garden soils was 2.5-4 times as much as in their originated soils, and was lower in paddy soils than in their originated soils. The areas with a higher content of soil DTPA-extractable zinc appeared in the near suburbs and the riverside along Hunhe River and the wastewater drainage of Xihe River, and the extremely high values in the near suburb of the city's residential area were a striking feature, indicating the key role of city pollution in the spatial heterogeneity of soil DTPA-extractable zinc. When recorded in the form of a soil pollution map,the results of such a survey make it possible to identify the unusually polluted areas, and to provide more information for precise agriculture and environmental control.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2007CB106802)the National Natural Science Foundation of China (No. 30970546)
文摘Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in a plant community dominated by Artemisia ordosica, located on the eastern boundary of Tcngger Desert in the Alxa League, Inner Mongolia, China, were studied to understand whether OM was directly involved in the formation of pedogenic carbonate. The results showed that DHA and CuCO3 positively correlated with OM content, and DHA, OM, and CaCO3 were correlated with each other in their spatial distribution, indicating that abundant OM content contributed to the formation of CaCO3. Therefore, the formation of pedogenic CaCO3 was a biotic process in the plant community dominated by A. ordosica.
基金supported by the National Key Research and Development Program,China(No.2018YFC1800400).
文摘Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that soil was contaminated heavily withmetal(loid)s.The mean of lead(Pb),arsenic(As),cadmium(Cd),mercury(Hg)and antimony(Sb)content in topsoil is 9.7,8.2,5.0,2.3,and 1.2 times higher than the risk screening value for soil contamination of development land of China(GB36600-2018),respectively.Cd ismainly enriched in the 0–6mdepth of site soil while As and Pbmainly deposited in the 0–4mlayer.The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter.As,Hg,Sb,Pb and copper(Cu)were mainly distributed in pyrometallurgical area,while Cd,thallium(Tl)and zinc(Zn)was mainly existed in both hydrometallurgical area and raw material storage area.Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources,accounting for 84.5%.Specifically,Pb,Tl,As,Hg,Sb and Cumainly from atmospheric deposition(55.9%),Cd and Zn mainly from surface runoff(28.6%),While nickel(Ni)mainly comes from parent material(15.5%).The results clarified the spatial distribution and their sources in different functional areas of the smelter,providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.
基金Project supported by the US National Science Foundation (No. DEB-0075617)
文摘Village landscapes, which integrate small-scMe agriculture with housing, forestry, and a host of other land use practices, cover more than 2 million square kilometers across China. Village lands tend to be managed at very fine spatial scales (≤ 30 m), with managers both adapting their practices to existing variation in soils and terrain (e.g., fertile plains vs. infertile slopes) and also altering soil fertility and even terrain by terracing, irrigation, fertilizing, and other land use practices. Relationships between fine-scale land management patterns and soil organic carbon (SOC) in the top 30 cm of village soils were studied by sampling soils within fine-scale landscape features using a regionally weighted landscape sampling design across five environmentally distinct sites in China. SOC stocks across China's village regions (5 Pg C in the top 30 cm of 2 ×10^6 km^2) represent roughly 4% of the total SOC stocks in global croplands. Although macroclimate varied from temperate to tropical in this study, SOC density did not vary significantly with climate, though it was negatively correlated with regional mean elevation. The highest SOC densities within landscapes were found in agricultural lands, especially paddy, the lowest SOC densities were found in nonproductive lands, and forest lands tended toward moderate SOC densities. Bue to the high SOC densities of agricultural lands and their predominance in village landscapes, most village SOC was found in agricultural land, except in the tropical hilly region, where forestry accounted for about 45% of the SOC stocks. A surprisingly large portion of village SOC was associated with built structures and with the disturbed lands surrounding these structures, ranging from 〉 18% in the North China Plain to about 9% in the tropical hilly region. These results confirmed that local land use practices, combined with local and regional variation in terrain, were associated with most of the SOC variation within and across China's village landscapes and may be an important cause of regional variation in SOC.
基金Fundamental Research Funds for the Central Universities(TD-JC-2013-1)NSFC(31570413).
文摘Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower richness.This is because there is niche differentiation among species and different species can complement each other and occupy a broader range of niches when plant species richness is high.However,no study has tested how soil particle heterogeneity affects the yield of plant communities,and whether such effects depend on the spatial scale of the heterogeneity and the species richness within the communities.Methods In a greenhouse experiment,we sowed seeds of four-species or eight-species mixtures in three heterogeneous treatments consisting of 32,8 or 2 patches of both small(1.5 mm)and large quartz(3.0 mm)particles arranged in a chessboard manner and one homogeneous treatment with an even mixture of small and large quartz particles.Important Findings Biomass production was significantly greater in the communities with high species richness than those with low species richness.However,soil particle heterogeneity or its interactions with patch scale or species richness did not significantly affect biomass production of the experimental communities.This work indicates that plant species richness may have a bigger impact on plant productivity than soil particle heterogeneity.Further studies should consider multiple sets of plant species during longer time periods to unravel the potential mechanisms of soil heterogeneity and its interactions with the impacts of species richness on community yield and species coexistence.
基金TheNationalNaturalScienceFoundationofChina (No .39770 1 50and 39470 1 2 9)
文摘After the analysis on the linages of species, the fractal dimensions of vegetation and soil in a managed larch(Larix gmelini) forest in Daxingan Mountains, NE China were estimated separately, and their scale correlation was discussed. (1) The dominant species of the larch forest, larch and the important accompany species, birch (Betula platyphylla) were homogeneously distributed along the transect. The other species were heterogeneous, and can be divided into three groups located on the right, left and central parts of the transect respectively. The transect can be separated into two parts at the position for the 29th quadrat(580m). (2) The fractal dimension in the large scale range from 200 to 400m was lower than that in the small scale range from 0 to 200m in the forest, indicating the different variation regularities of spatial heterogeneity in different scale ranges. The inflection point at 200m was one of the key scales of spatial hierarchy of the larch forest. (3) The scale variation of the forest was correlated with that of soil pH on large scales, which reflected the indirect control of the dominant species to the spatial pattern and species distribution of understorey by changing soil acidity in the forest and the indirect effects of forest management.
基金Partly supported by the Japan Society for the Promotion of Science (No. L-02711)
文摘The vegetation spatial heterogeneity and ecological characteristics in different soil regions were analyzed by surveying the vegetation in 12 different soil regions of Inner Mongolia, China, including coniferous-broadleaf deciduous forests, shrub, grassland, and desert regions with 1122 large 2 cm × 2 cm quadrats (actual size 30 km × 30 km, referred to as L-quadrat hereafter) in about 1.18 million km2. Each L-quadrat was divided into four small 1 cm × 1 cm quadrats (actual size 15 km × 15 km, S-quadrat). The vegetation was analyzed based on the beta-binomial distribution to describe the frequency of occurrence and spatial heterogeneity for each kind of vegetation. The weighted average of the heterogeneity of all vegetation in the same soil region provides a measure of the soil regional landscape level heterogeneity which describes the spatial complexity of the regional landscape composition of the existing vegetation. Comparison of the vegetation characteristics in the 12 soil regions shows that, the calcic gray soil has the highest average vegetation type per quadrat. The largest soil region is calcic chestnut soil and has the most vegetation types. Every soil region has its own dominant vegetation sequence which dominates in occurrence and dominant vegetation types which dominates in spatial heterogeneity. For the Inner Mongolian vegetation, the weighted average of the heterogeneity is 0.60 and the vegetation diversity index is 4.47.
基金supported by the Fundamental Research Funds for the National Natural Science Foundation of China(No:42077007)the General Project of Chongqing Natural Science Foundation(No:CSTB2022NSCQ-MSX0446)。
文摘Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate.
文摘土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km 2范围内,通过高密度电法(ERT)探测45条样线,共获取1731个样点的土壤-表层岩溶带厚度及环境因子数据资料,研究了土壤和表层岩溶带厚度的空间分布格局及其影响因素。结果表明,土壤和表层岩溶带厚度平均值分别为1.15 m和6.44 m,且分别呈现强变异程度和中等变异程度。地统计分析结果表明球状模型和指数模型分别可以反映土壤和表层岩溶带的空间结构特征。土壤厚度呈现中等空间自相关性,变程长,空间连续性好;而表层岩溶带呈现强烈的空间自相关性,变程短,空间依赖性强。土壤厚度受到环境因子(地形湿度指数、垂直曲率、曲率、坡向、坡度、高程、覆盖度、出露基岩率和植被归一化指数)的多重影响,而表层岩溶带厚度受部分环境因子影响的同时,与土壤厚度和植被类型的相关性更高。研究结果有助于喀斯特区土壤-表层岩溶带演化机理认识,并为土壤-表层岩溶带厚度的空间预测提供科学依据。