To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method a...To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining.展开更多
Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional wate...Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.展开更多
Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltrati...Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding.展开更多
The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inver...The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.展开更多
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
Electrical capacitance volume tomography(ECVT) is a recently-developed technique for real-time,non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity.This work is ...Electrical capacitance volume tomography(ECVT) is a recently-developed technique for real-time,non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity.This work is first application of the method to visualization of water flow in soil.We describe the principles behind the method,and then demonstrate its use with a simple laboratory infiltration experiment.32 ECVT sensors were installed on the sides of an empty PVC column.Water was poured into the column at a constant rate,and ECVT data were collected every second.The column was then packed with dry sand and again supplied with water at a constant rate with data collected every second.Data were analyzed to give bulk average water contents,which proved consistent with the water supply rates.Data were also analyzed to give 3D images(216 voxels) allowing visualization of the water distribution during the experiments.Result of this work shows that water infiltration into the soil,wall flow,progress of the unstable wetting front and the final water distribution are clearly visible.展开更多
The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam s...The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam seepage and so on. This device is different from the traditional instruments for the rock and soil permeability. In order to verify the practicability of the device,the authors collected the soil samples for laboratory penetration test,observed the seepage damage phenomenon,and obtained the dynamic change curve of permeability coefficient and isopotential map of water pressure. At the same time,the Geostudio finite element software is used to simulate the steady seepage of the test device. By contrast of the isopotential maps between simulation and actual water pressures,it is found that they are approximately the same. It is proved that the test data of the device is scientific and reliable,reaching the results of the test and design purposes. The instrument can be used in many aspects of experimental study on soil seepage.展开更多
The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetat...The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau.展开更多
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and sl...Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau展开更多
Decentralized sewage treatment systems are commonly used in rural areas of China because these systems are low cost, easy maintenance and high efficiency. However, as awareness of the importance of sus- tainable devel...Decentralized sewage treatment systems are commonly used in rural areas of China because these systems are low cost, easy maintenance and high efficiency. However, as awareness of the importance of sus- tainable development has increased, questions concerning how to evaluate the sustainability of these systems has become a key point. In this study, emergy analysis is applied to evaluate the soil rapid infiltration for a decentralized rural sewage treatment plant that is located in Dongzhuangtou village, Qingdao, China. The results show that the environmental load ratio and the emergy sustainability index of the system are 0.07 and 242.88, respectively. The net economic benefit is 2.17E+18 sej·year^-1 when converted into solar emjoule. Compared to other treatment systems, the environmental load ratio of the system is lower, and the emergy sustainability index is higher. This study reveals the reuse of treated water can produce great economic benefits in the soil rapid infiltration system. The environmental impact of the system is lower, and the sustainability is higher than that of other treatment systems. This result provides a quantitative evaluation of the sustainable development of rural sewage treatment systems in China.展开更多
Rainfall simulators(RS)have been used,above all,to evaluate hydrological processes related to soil water infiltration,surface runoff and soil erosion.They allow repeatability of rain application with different precipi...Rainfall simulators(RS)have been used,above all,to evaluate hydrological processes related to soil water infiltration,surface runoff and soil erosion.They allow repeatability of rain application with different precipitation intensities in field and/or laboratory conditions and should produce events with physical characteristics similar to natural rain.In this manuscript,we carried out a bibliometric and scientometric analysis of studies with simulated rainfall in Brazil to assess the temporal evolution of publications,the main topics addressed and the degree of technological development of the equipment.We searched for the terms“rainfall simulator”OR“simulated rainfall”AND“Brazil”in the Scopus,Web of Science,SciELO and Google Scholar databases.We found 143 articles published in the last 37 years(1985-2022).Our findings indicate that the main research areas covered in papers are soil erosion(57.34%),soil water infiltration(24.47%),nutrient losses(9.8%)and RS development and calibration/assessment(8.39%).In recent years,the number of published papers in international high-impact factor journals has increased.Most of the papers(49.65%)refer to studies carried out by institutions located in the south and southeast regions of Brazil.Moreover,there is a large gap of studies on simulated rainfall in other regions of Brazil,where important biomes such as the Cerrado,Amazon,Caatinga,and their transitions are located.This study informs research priorities on soil erosion under simulated rainfall and provides a bibliographic database that can assist in more detailed future analyses.展开更多
Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are la...Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are lacking. In this study, we used the YWB-01 Deep Soil Infiltration Water Recorder which had been invented by ourselves to measure the quantity of rain infiltration into deep soil, 150 cm below ground, in four locations in China: Mu Us Sandy Land and Ulan Buh, Tengger, and Badan Jilin deserts over a 2-year period. We found:(1) Deep soil rainfall infiltration decreased progressively from east to west and from semiarid to arid areas, with two locations completely lacking rainfall infiltration. Heavy rain was important to deep soil infiltration in shifting sandy land of arid and semiarid areas.(2) Seasonal variation of infiltration was correlated with rainfall, with a time lag that was less apparent in areas with more rainfall.(3) For single intense rainfall events, infiltration maximums occurred 40–55 h after the rainfall, during which the infiltration rates increased rapidly before reaching a peak, and then decreased slowly. Continuous infiltration could last about 150 h. Rainfall infiltration was determined by the combined action of intensity, quantity and duration. Rainfall with low intensity, long duration, and large quantity was most favorable for deep soil infiltration. Our results can be used in water resource assessments and protection during eco-restoration in the arid and semiarid areas in China.展开更多
Changes in the hydrological processes in alpine soil constitute one of the several key problems encountered with studying watershed hydrology and ecosystem stability against the background of global warming. A typical...Changes in the hydrological processes in alpine soil constitute one of the several key problems encountered with studying watershed hydrology and ecosystem stability against the background of global warming. A typically developing thermokarst lake was chosen as a subject for a study using model simulation based on observations of soil physical properties, infiltration processes, and soil moisture. The results showed that the selected thermokarst lake imposed certain changes on the soil infiltration processes and, with the degree of impact intensifying, the initial infiltration rate decreased. The greatest reduction was achieved in the area of moderate impact. However, the stable infiltration rate and cumulative infiltration gradually increased in the surface layer at a depth of 10 and 20 cm, both decreasing initially and then increasing, which is correlated significantly with soil textures. Moreover, the cumulative infiltration changed in line with steady infiltration rate. Based on a comparative analysis, the Horton model helps better understand the effect on the soil infiltration processes of the cold alpine meadow close to the chosen thermokarst lake. In conclusion, the formation of the thermokarst lake reduced the water holding capacity of the alpine meadow soil and caused the hydraulic conductivity to increase, resulting in the reduction of runoff capacity in the area of the thermokarst lake.展开更多
The present study focuses on straw checkerboards established in the Shapotou Desert Research and Experimental Station at the southeastern edge of the Tengger Desert and their effects on the species richness and the ab...The present study focuses on straw checkerboards established in the Shapotou Desert Research and Experimental Station at the southeastern edge of the Tengger Desert and their effects on the species richness and the abundance of Agriophyllum squarrosu Moq. Specifically, detailed analyses on the spatial distribution of A. squarrosum and the related soil properties were carried out at a small scale in the straw checkerboards. A. squarrosum is an excellent pioneer plant for revegetation in desert areas. However, the distribution pattern of A. squarrosum and the influencing factors have not been sufficiently delineated. The results showed that the species richness and the abundance of A. squarrosum were decreased exponentially from the border to the center of the straw checkerboards. At the micro-geomorphological scale, the soil texture, soil organic matter (SOM), soil nutrients (nitrogen, phosphorus and potassium), and soil infiltration rate in the topsoil tended to increase from the center to the border within a straw checkerboard, while soil moisture presented an opposite tendency. The soil seed bank ofA. squarrosum, soil bulk density, electrical conductivity, sand content, CaCO3 accumulation, and pH showed no significant difference (P〉0.05) between the border and the center of the straw checkerboards. Multiple linear regression analysis indicated that the abundance of A. squarrosum was mainly determined by the concentrations of SOM, nitrogen, and the infiltration rate, implying that nutrient acclimation was the optimal competitive strategy ofA. squarrosum for surviving in a barren natural environment of an arid desert region.展开更多
Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suct...Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process(formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method.展开更多
Soil salinization is an issue of global concern.Despite recent evidence indicates that application of sediments into saline-alkali soil in Yellow River Delta as an additive can increase crop yield,its effects on soil ...Soil salinization is an issue of global concern.Despite recent evidence indicates that application of sediments into saline-alkali soil in Yellow River Delta as an additive can increase crop yield,its effects on soil structure and infiltration remain uncertain.In this study,the comprehensively analyses were conducted on the soil infiltration and microstructure of the soil treated with three sediment application layers(surface layer at 0-15 cm,lower layer at 15-30 cm,and plough layer at 0-30 cm)and four sediment incorporation rates(0,2%,5%and 10%),using soil column simulation experiment.Results indicated that the dredged Yellow River sediments can improve the infiltration capacity of saline-alkali soil;and the infiltration capacity increased with the rising sediment incorporation rate under the given application pattern.Compared with the control,applying dredged Yellow River sediments at 10%rate at lower layer and plough layer significantly facilitated the soil infiltration of the saline-alkali soil.Soil macro-porosity for T2,T5 and T10 was 26%,52%and 158%more than that for the control,respectively.This phenomenon was attributed to the increased soil macro-porosity,due to the improved soil microstructure with the incorporation of sediment into the saline-alkali soil.Moreover,the cumulative infiltration was fitted better with Kostiakov infiltration model than Horton and Philip models.展开更多
Alternate moistube-irrigation is a new type of water-saving irrigation,and research on water infiltration with alternate moistube-irrigation is important for the design of irrigation schemes and helpful to understand ...Alternate moistube-irrigation is a new type of water-saving irrigation,and research on water infiltration with alternate moistube-irrigation is important for the design of irrigation schemes and helpful to understand and apply this technology.The effects of the pressure head(1.0 m and 1.5 m)and tube spacing(10 cm,20 cm,and 30 cm between two moistubes respectively)on soil water infiltration in alternate moistube-irrigation were studied in laboratory experiments,and the cumulative infiltration,discharge of the moistube,and shape and water distribution of the cross-section of the wetting front were determined.The cumulative infiltration increased quickly and linearly with the infiltration time at 0-96 h(R^(2)>0.99),and changed smoothly at 96-192 h with a basically steady infiltration rate.The discharge of the moistube increased rapidly at the beginning of irrigation,then decreased before stabilizing.The cumulative infiltrations and discharges of moistube under the 1.5 m pressure head were more than those under the 1.0 m pressure head.The shape of the cross-section of the wetting front for a single moistube was similar to a concentric circle.With the increase of tube spacing,the interaction between water infiltrations of two moistubes decreased.The soil water distributions around two moistubes were similar to each other under the 1.0 m pressure head and large tube spacing.When the tube spacing was 20 cm,the soil water distribution was more uniform around two moistubes.展开更多
Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltrat...Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltration(CI),but are often inaccurate.In this study,several novel standalone machine learning algorithms(M5Prime(M5P),decision stump(DS),and sequential minimal optimization(SMO))and hybrid algorithms based on additive regression(AR)(i.e.,AR-M5P,AR-DS,and AR-SMO)and weighted instance handler wrapper(WIHW)(i.e.,WIHW-M5P,WIHW-DS,and WIHW-SMO)were developed for CI prediction.The Soil Conservation Service(SCS)model developed by the United States Department of Agriculture(USDA),one of the most popular empirical models to predict CI,was considered as a benchmark.Overall,154 measurements of CI(explanatory/input variables)were taken from 16 sites in a semi-arid region of Iran(Illam and Lorestan provinces).Six input variable combinations were considered based on Pearson correlations between candidate model inputs(time of measuring and soil bulk density,moisture content,and sand,clay,and silt percentages)and CI.The dataset was divided into two subgroups at random:70%of the data were used for model building(training dataset)and the remaining 30%were used for model validation(testing dataset).The various models were evaluated using different graphical approaches(bar charts,scatter plots,violin plots,and Taylor diagrams)and quantitative measures(root mean square error(RMSE),mean absolute error(MAE),Nash-Sutcliffe efficiency(NSE),and percent bias(PBIAS)).Time of measuring had the highest correlation with CI in the study area.The best input combinations were different for different algorithms.The results showed that all hybrid algorithms enhanced the CI prediction accuracy compared to the standalone models.The AR-M5P model provided the most accurate CI predictions(RMSE=0.75 cm,MAE=0.59 cm,NSE=0.98),while the SCS model had the lowest performance(RMSE=4.77 cm,MAE=2.64 cm,NSE=0.23).The differences in RMSE between the best model(AR-M5P)and the second-best(WIHW-M5P)and worst(SCS)were 40%and 84%,respectively.展开更多
This paper explores the influence of the local meteoric conditions, the overlying soil on the concentrations of Ca, Mg, and St, and the ratios of Mg/Ca, Sr/Ca, and Mg/Sr in soil infiltrating water (SIW). An in situ ...This paper explores the influence of the local meteoric conditions, the overlying soil on the concentrations of Ca, Mg, and St, and the ratios of Mg/Ca, Sr/Ca, and Mg/Sr in soil infiltrating water (SIW). An in situ monitoring program was carried out above the Furong Cave throughout 2010 to collect data on SIW, monthly temperature and rainfall, and the geochemical com- position and granularity of soils. The discharge of SIW responded quickly to the local rainfall, and its residence time was the primary factor affecting the Ca, Mg, and Sr content of the SIW. The high concentrations of Ca, Mg, and Sr in the SIW during April should be attributed primarily to the prolonged residence of SIW in the soil during the local dry seasons of winter and early spring. The maximum Mg/Sr ratio also occurred in April. The ratio of Mg/Ca in SIW is positively correlated with pro- longed residence time and with high temperatures, which do not strongly affect the ratio of Sr/Ca. The Mg/Ca ratio was lowest when the Sr/Ca ratio was highest because plant metabolism increased the absorption of Ca and Mg, but not St, and also be- cause higher temperatures enhanced the dissolution of Mg more than that of Sr. These different responses of Mg and Sr to temperature increases resulted in high Mg/Sr ratios during July and August.展开更多
The reduction of soil and water losses under furrow irrigation with saline water is important to environmental protection and agricultural production. The objective of this study was to determine the effect of polyacr...The reduction of soil and water losses under furrow irrigation with saline water is important to environmental protection and agricultural production. The objective of this study was to determine the effect of polyacrylamide (PAM) application on soil infiltration and erosion under simulated furrow irrigation with saline water. Polyacrylamide was applied by dissolving it in irrigation water at the rates of 1.5, 7.5, and 15.0 mg L-1 or spreading it as a powder on soil surface at the rates of 0.3, 1.5, 3.0, and 6.0 g m-2, respectively. The electrolyte concentration of tested irrigation water was 10 and 30 mmolc L-1 and its sodium adsorption ratio (SAR) was 0.5, 10.0, and 20.0 (mmolc L-1)0.5. Distilled water was used as a control for irrigation water quality. Results indicated that the electrolyte concentration and SAR generally did not significantly affect soil and water losses after PAM application. Infiltration rate and total infiltration volume decreased with the increase of PAM application rate. Polyacrylamide application in both methods significantly reduced soil erosion, but PAM application rate did not significantly affect it. The solution PAM application was more effective in controlling soil erosion than the powdered PAM application, but the former exerted a greater adverse influence on soil infiltration than the latter. Under the same total amounts, the powdered PAM application resulted in a 38.2%-139.6% greater infiltration volume but a soil mass loss of 1.3-3.4 times greater than the solution PAM application.展开更多
基金supported by the National High-Tech Research and Development Projects(863 program)(2013AA102904).
文摘To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KSCX2-YW-N-003)the National Basic Research Program of China (No.2005CB121103)the National Natural Science Foundation ofChina (No.50879067).
文摘Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.
基金Under the auspices of Excellent Young Scholars of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.DLSYQ 13004)Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams(No.KZZD-EW-TZ-07-09)Strategic Priority Research Program of Chinese Academy of Sciences(No.KFZD-SW-302-03)
文摘Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding.
基金supported by the National Natural Science Foundation of China (Grant No. 41201268)
文摘The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.
文摘Electrical capacitance volume tomography(ECVT) is a recently-developed technique for real-time,non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity.This work is first application of the method to visualization of water flow in soil.We describe the principles behind the method,and then demonstrate its use with a simple laboratory infiltration experiment.32 ECVT sensors were installed on the sides of an empty PVC column.Water was poured into the column at a constant rate,and ECVT data were collected every second.The column was then packed with dry sand and again supplied with water at a constant rate with data collected every second.Data were analyzed to give bulk average water contents,which proved consistent with the water supply rates.Data were also analyzed to give 3D images(216 voxels) allowing visualization of the water distribution during the experiments.Result of this work shows that water infiltration into the soil,wall flow,progress of the unstable wetting front and the final water distribution are clearly visible.
基金National Natural Science Foundation of China(No.41072197)
文摘The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam seepage and so on. This device is different from the traditional instruments for the rock and soil permeability. In order to verify the practicability of the device,the authors collected the soil samples for laboratory penetration test,observed the seepage damage phenomenon,and obtained the dynamic change curve of permeability coefficient and isopotential map of water pressure. At the same time,the Geostudio finite element software is used to simulate the steady seepage of the test device. By contrast of the isopotential maps between simulation and actual water pressures,it is found that they are approximately the same. It is proved that the test data of the device is scientific and reliable,reaching the results of the test and design purposes. The instrument can be used in many aspects of experimental study on soil seepage.
基金funded by the by the State Key Program of National Natural Science of China (41330858)the National Natural Science Foundation of China (41471226)the Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A318009902-1510)
文摘The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau.
基金financially supported by the Fundamental Research Funds for the Central Universities (2015ZCQ-SB-03)the National Natural Science Foundation of China (51309007)the National Key Research and Development Project of China (2016YFC0501704)
文摘Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau
基金National Natural Science Foundation of China(41101080)the Shandong Natural Science Foundation(ZR2014DQ028 and ZR2015DM004)
文摘Decentralized sewage treatment systems are commonly used in rural areas of China because these systems are low cost, easy maintenance and high efficiency. However, as awareness of the importance of sus- tainable development has increased, questions concerning how to evaluate the sustainability of these systems has become a key point. In this study, emergy analysis is applied to evaluate the soil rapid infiltration for a decentralized rural sewage treatment plant that is located in Dongzhuangtou village, Qingdao, China. The results show that the environmental load ratio and the emergy sustainability index of the system are 0.07 and 242.88, respectively. The net economic benefit is 2.17E+18 sej·year^-1 when converted into solar emjoule. Compared to other treatment systems, the environmental load ratio of the system is lower, and the emergy sustainability index is higher. This study reveals the reuse of treated water can produce great economic benefits in the soil rapid infiltration system. The environmental impact of the system is lower, and the sustainability is higher than that of other treatment systems. This result provides a quantitative evaluation of the sustainable development of rural sewage treatment systems in China.
基金The authors would like to thank the Brazilian Agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)(Finance code 001)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(Processes 140335/2021-8 and 305919/2022-9)for funding the training of highly qualified human resources through research grants and for funding the projects that resulted in the referenced publications and the present paper.
文摘Rainfall simulators(RS)have been used,above all,to evaluate hydrological processes related to soil water infiltration,surface runoff and soil erosion.They allow repeatability of rain application with different precipitation intensities in field and/or laboratory conditions and should produce events with physical characteristics similar to natural rain.In this manuscript,we carried out a bibliometric and scientometric analysis of studies with simulated rainfall in Brazil to assess the temporal evolution of publications,the main topics addressed and the degree of technological development of the equipment.We searched for the terms“rainfall simulator”OR“simulated rainfall”AND“Brazil”in the Scopus,Web of Science,SciELO and Google Scholar databases.We found 143 articles published in the last 37 years(1985-2022).Our findings indicate that the main research areas covered in papers are soil erosion(57.34%),soil water infiltration(24.47%),nutrient losses(9.8%)and RS development and calibration/assessment(8.39%).In recent years,the number of published papers in international high-impact factor journals has increased.Most of the papers(49.65%)refer to studies carried out by institutions located in the south and southeast regions of Brazil.Moreover,there is a large gap of studies on simulated rainfall in other regions of Brazil,where important biomes such as the Cerrado,Amazon,Caatinga,and their transitions are located.This study informs research priorities on soil erosion under simulated rainfall and provides a bibliographic database that can assist in more detailed future analyses.
基金supported by the National Basic Research Program of China (Grant No. 2013CB429901)the National Natural Science Foundation of China (Grant Nos. 31170667 and 40971283)
文摘Soil moisture is the key resource constraint in arid ecosystems, and has been a focus of research on restoration. However, quantitative studies on the contribution of rainfall to deep soil rainfall infiltration are lacking. In this study, we used the YWB-01 Deep Soil Infiltration Water Recorder which had been invented by ourselves to measure the quantity of rain infiltration into deep soil, 150 cm below ground, in four locations in China: Mu Us Sandy Land and Ulan Buh, Tengger, and Badan Jilin deserts over a 2-year period. We found:(1) Deep soil rainfall infiltration decreased progressively from east to west and from semiarid to arid areas, with two locations completely lacking rainfall infiltration. Heavy rain was important to deep soil infiltration in shifting sandy land of arid and semiarid areas.(2) Seasonal variation of infiltration was correlated with rainfall, with a time lag that was less apparent in areas with more rainfall.(3) For single intense rainfall events, infiltration maximums occurred 40–55 h after the rainfall, during which the infiltration rates increased rapidly before reaching a peak, and then decreased slowly. Continuous infiltration could last about 150 h. Rainfall infiltration was determined by the combined action of intensity, quantity and duration. Rainfall with low intensity, long duration, and large quantity was most favorable for deep soil infiltration. Our results can be used in water resource assessments and protection during eco-restoration in the arid and semiarid areas in China.
基金supported by the National Natural Science Foundation of China(Grant No.41271092)the National Basic Research Program of China(Grant Nos.2010CB951402,2012CB026101)the Key Project of the National Natural Science Foundation of China(Grant No.D010102-91125010)
文摘Changes in the hydrological processes in alpine soil constitute one of the several key problems encountered with studying watershed hydrology and ecosystem stability against the background of global warming. A typically developing thermokarst lake was chosen as a subject for a study using model simulation based on observations of soil physical properties, infiltration processes, and soil moisture. The results showed that the selected thermokarst lake imposed certain changes on the soil infiltration processes and, with the degree of impact intensifying, the initial infiltration rate decreased. The greatest reduction was achieved in the area of moderate impact. However, the stable infiltration rate and cumulative infiltration gradually increased in the surface layer at a depth of 10 and 20 cm, both decreasing initially and then increasing, which is correlated significantly with soil textures. Moreover, the cumulative infiltration changed in line with steady infiltration rate. Based on a comparative analysis, the Horton model helps better understand the effect on the soil infiltration processes of the cold alpine meadow close to the chosen thermokarst lake. In conclusion, the formation of the thermokarst lake reduced the water holding capacity of the alpine meadow soil and caused the hydraulic conductivity to increase, resulting in the reduction of runoff capacity in the area of the thermokarst lake.
基金supported by the National Natural Science Foundation of China(41671076,41530746)the National Basic Research Program of China(2013CB429905)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017463)
文摘The present study focuses on straw checkerboards established in the Shapotou Desert Research and Experimental Station at the southeastern edge of the Tengger Desert and their effects on the species richness and the abundance of Agriophyllum squarrosu Moq. Specifically, detailed analyses on the spatial distribution of A. squarrosum and the related soil properties were carried out at a small scale in the straw checkerboards. A. squarrosum is an excellent pioneer plant for revegetation in desert areas. However, the distribution pattern of A. squarrosum and the influencing factors have not been sufficiently delineated. The results showed that the species richness and the abundance of A. squarrosum were decreased exponentially from the border to the center of the straw checkerboards. At the micro-geomorphological scale, the soil texture, soil organic matter (SOM), soil nutrients (nitrogen, phosphorus and potassium), and soil infiltration rate in the topsoil tended to increase from the center to the border within a straw checkerboard, while soil moisture presented an opposite tendency. The soil seed bank ofA. squarrosum, soil bulk density, electrical conductivity, sand content, CaCO3 accumulation, and pH showed no significant difference (P〉0.05) between the border and the center of the straw checkerboards. Multiple linear regression analysis indicated that the abundance of A. squarrosum was mainly determined by the concentrations of SOM, nitrogen, and the infiltration rate, implying that nutrient acclimation was the optimal competitive strategy ofA. squarrosum for surviving in a barren natural environment of an arid desert region.
基金Projects(51508040,51578079,51678074,51678073)supported by the National Natural Science Foundation of ChinaProject(KFJ160601)supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science and Technology),China
文摘Rainfall, as one of the most significant factors triggering the residual soil slope failure, leads to not only the reduction of soil shear strength, but also the increase of soil weight and the decrease of matric suction as well. All these modifications in soil properties have important influence on the slope stability. The water infiltration and redistribution inside the slope are the preconditions of the slope stability under rainfall conditions. Based on the numerical simulation via finite element method, the water infiltration process under rainfall conditions was studied in the present work. The emphases are the formation, distribution and dissipation of transient saturated zone. As for the calculation parameters, the SWCC and the saturated permeability have been determined by pressure plate test and variable head test respectively. The entire process(formation, development, dissipation) of the transient saturated zone was studied in detail. The variations of volumetric water content, matric suction and hydraulic gradient inside the slope, and the eventually raise of groundwater table were characterized and discussed, too. The results show that the major cause of the formation of transient saturated zone is ascribed to the fact that the exudation velocity of rainwater on the wetting front is less than the infiltration velocity of rainfall; as a result, the water content of the soil increases. On the other hand, the formation and extension of transient saturated zone have a close relationship with rainfall intensity and duration. The results can help the geotechnical engineers for the deeper understanding of the failure of residual slope under rainfall condition. It is also suggested that the proper drainage system in the slope may be the cost-effective slope failure mitigation method.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51574156)the Key Development Program for Research of Shandong Province(Grant No.2018GNC110023)The authors would like to thank the anonymous reviews and editors for their constructive suggestions which greatly improve the quality of this manuscript.
文摘Soil salinization is an issue of global concern.Despite recent evidence indicates that application of sediments into saline-alkali soil in Yellow River Delta as an additive can increase crop yield,its effects on soil structure and infiltration remain uncertain.In this study,the comprehensively analyses were conducted on the soil infiltration and microstructure of the soil treated with three sediment application layers(surface layer at 0-15 cm,lower layer at 15-30 cm,and plough layer at 0-30 cm)and four sediment incorporation rates(0,2%,5%and 10%),using soil column simulation experiment.Results indicated that the dredged Yellow River sediments can improve the infiltration capacity of saline-alkali soil;and the infiltration capacity increased with the rising sediment incorporation rate under the given application pattern.Compared with the control,applying dredged Yellow River sediments at 10%rate at lower layer and plough layer significantly facilitated the soil infiltration of the saline-alkali soil.Soil macro-porosity for T2,T5 and T10 was 26%,52%and 158%more than that for the control,respectively.This phenomenon was attributed to the increased soil macro-porosity,due to the improved soil microstructure with the incorporation of sediment into the saline-alkali soil.Moreover,the cumulative infiltration was fitted better with Kostiakov infiltration model than Horton and Philip models.
基金This work was supported by the National Natural Science Foundation for Young Scientists of China(51809189)the Natural Science Foundation(201701D121109,201801D121266)the Key Research and Development Plan(201703D211020-2)of Shanxi Province,China.
文摘Alternate moistube-irrigation is a new type of water-saving irrigation,and research on water infiltration with alternate moistube-irrigation is important for the design of irrigation schemes and helpful to understand and apply this technology.The effects of the pressure head(1.0 m and 1.5 m)and tube spacing(10 cm,20 cm,and 30 cm between two moistubes respectively)on soil water infiltration in alternate moistube-irrigation were studied in laboratory experiments,and the cumulative infiltration,discharge of the moistube,and shape and water distribution of the cross-section of the wetting front were determined.The cumulative infiltration increased quickly and linearly with the infiltration time at 0-96 h(R^(2)>0.99),and changed smoothly at 96-192 h with a basically steady infiltration rate.The discharge of the moistube increased rapidly at the beginning of irrigation,then decreased before stabilizing.The cumulative infiltrations and discharges of moistube under the 1.5 m pressure head were more than those under the 1.0 m pressure head.The shape of the cross-section of the wetting front for a single moistube was similar to a concentric circle.With the increase of tube spacing,the interaction between water infiltrations of two moistubes decreased.The soil water distributions around two moistubes were similar to each other under the 1.0 m pressure head and large tube spacing.When the tube spacing was 20 cm,the soil water distribution was more uniform around two moistubes.
文摘Water infiltration into soil is an important process in hydrologic cycle;however,its measurement is difficult,time-consuming and costly.Empirical and physical models have been developed to predict cumulative infiltration(CI),but are often inaccurate.In this study,several novel standalone machine learning algorithms(M5Prime(M5P),decision stump(DS),and sequential minimal optimization(SMO))and hybrid algorithms based on additive regression(AR)(i.e.,AR-M5P,AR-DS,and AR-SMO)and weighted instance handler wrapper(WIHW)(i.e.,WIHW-M5P,WIHW-DS,and WIHW-SMO)were developed for CI prediction.The Soil Conservation Service(SCS)model developed by the United States Department of Agriculture(USDA),one of the most popular empirical models to predict CI,was considered as a benchmark.Overall,154 measurements of CI(explanatory/input variables)were taken from 16 sites in a semi-arid region of Iran(Illam and Lorestan provinces).Six input variable combinations were considered based on Pearson correlations between candidate model inputs(time of measuring and soil bulk density,moisture content,and sand,clay,and silt percentages)and CI.The dataset was divided into two subgroups at random:70%of the data were used for model building(training dataset)and the remaining 30%were used for model validation(testing dataset).The various models were evaluated using different graphical approaches(bar charts,scatter plots,violin plots,and Taylor diagrams)and quantitative measures(root mean square error(RMSE),mean absolute error(MAE),Nash-Sutcliffe efficiency(NSE),and percent bias(PBIAS)).Time of measuring had the highest correlation with CI in the study area.The best input combinations were different for different algorithms.The results showed that all hybrid algorithms enhanced the CI prediction accuracy compared to the standalone models.The AR-M5P model provided the most accurate CI predictions(RMSE=0.75 cm,MAE=0.59 cm,NSE=0.98),while the SCS model had the lowest performance(RMSE=4.77 cm,MAE=2.64 cm,NSE=0.23).The differences in RMSE between the best model(AR-M5P)and the second-best(WIHW-M5P)and worst(SCS)were 40%and 84%,respectively.
基金supported by National Natural Science Foundation of China(Grant Nos.41302138,40971122,41030103 and 41172165)the Fundamental Research Funds for the Central Universities of Southwest University(Grant Nos.XDJK2013A012 and XDJK2009C106)State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences(Grant No.SKLLQG1310)
文摘This paper explores the influence of the local meteoric conditions, the overlying soil on the concentrations of Ca, Mg, and St, and the ratios of Mg/Ca, Sr/Ca, and Mg/Sr in soil infiltrating water (SIW). An in situ monitoring program was carried out above the Furong Cave throughout 2010 to collect data on SIW, monthly temperature and rainfall, and the geochemical com- position and granularity of soils. The discharge of SIW responded quickly to the local rainfall, and its residence time was the primary factor affecting the Ca, Mg, and Sr content of the SIW. The high concentrations of Ca, Mg, and Sr in the SIW during April should be attributed primarily to the prolonged residence of SIW in the soil during the local dry seasons of winter and early spring. The maximum Mg/Sr ratio also occurred in April. The ratio of Mg/Ca in SIW is positively correlated with pro- longed residence time and with high temperatures, which do not strongly affect the ratio of Sr/Ca. The Mg/Ca ratio was lowest when the Sr/Ca ratio was highest because plant metabolism increased the absorption of Ca and Mg, but not St, and also be- cause higher temperatures enhanced the dissolution of Mg more than that of Sr. These different responses of Mg and Sr to temperature increases resulted in high Mg/Sr ratios during July and August.
基金the National Natural Science Foundation of China (No.40635027)the State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau of China (No.10501-169)
文摘The reduction of soil and water losses under furrow irrigation with saline water is important to environmental protection and agricultural production. The objective of this study was to determine the effect of polyacrylamide (PAM) application on soil infiltration and erosion under simulated furrow irrigation with saline water. Polyacrylamide was applied by dissolving it in irrigation water at the rates of 1.5, 7.5, and 15.0 mg L-1 or spreading it as a powder on soil surface at the rates of 0.3, 1.5, 3.0, and 6.0 g m-2, respectively. The electrolyte concentration of tested irrigation water was 10 and 30 mmolc L-1 and its sodium adsorption ratio (SAR) was 0.5, 10.0, and 20.0 (mmolc L-1)0.5. Distilled water was used as a control for irrigation water quality. Results indicated that the electrolyte concentration and SAR generally did not significantly affect soil and water losses after PAM application. Infiltration rate and total infiltration volume decreased with the increase of PAM application rate. Polyacrylamide application in both methods significantly reduced soil erosion, but PAM application rate did not significantly affect it. The solution PAM application was more effective in controlling soil erosion than the powdered PAM application, but the former exerted a greater adverse influence on soil infiltration than the latter. Under the same total amounts, the powdered PAM application resulted in a 38.2%-139.6% greater infiltration volume but a soil mass loss of 1.3-3.4 times greater than the solution PAM application.