A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parame...A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parameters of water and soil influence the instability and two types of instability may exist. One of them is dominated by pore pressure softening, while the other by strain softening. Finally, a practical application is discussed.展开更多
The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studi...The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studied by fractures condition, slope morphology, measured engineering features of rocks, and then interpreted by Dips software to define the fracture types for analysis of block toppling. The rock slope of the area was modeled by Rock plan by adding water penetration and earthquake. The results showed that in dry condition these slopes were stable, but by penetrating water and saturation of the open spaces of the fractures, the block toppling will occur. Also, seismic activities in the area caused the instability of the slopes, and landslide will happen. In the second area, landslides were spoon-shaped type. To investigate the soil slope stability, the condition of slope was modeled by using soil engineering properties and measuring the morphological condition of the slope such as slope dip, layers thickness, layers dip and slope elevation. It was shown instability of the soil slopes. To stabilize the sliding areas, the dip changing method and formation of stepped-style slope were done. However, the new condition changed the formation of sliding areas in the upper most part of the stairs. The retaining walls formed from the local materials were applied to the slope to provide the desire stability.展开更多
文摘A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parameters of water and soil influence the instability and two types of instability may exist. One of them is dominated by pore pressure softening, while the other by strain softening. Finally, a practical application is discussed.
文摘The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studied by fractures condition, slope morphology, measured engineering features of rocks, and then interpreted by Dips software to define the fracture types for analysis of block toppling. The rock slope of the area was modeled by Rock plan by adding water penetration and earthquake. The results showed that in dry condition these slopes were stable, but by penetrating water and saturation of the open spaces of the fractures, the block toppling will occur. Also, seismic activities in the area caused the instability of the slopes, and landslide will happen. In the second area, landslides were spoon-shaped type. To investigate the soil slope stability, the condition of slope was modeled by using soil engineering properties and measuring the morphological condition of the slope such as slope dip, layers thickness, layers dip and slope elevation. It was shown instability of the soil slopes. To stabilize the sliding areas, the dip changing method and formation of stepped-style slope were done. However, the new condition changed the formation of sliding areas in the upper most part of the stairs. The retaining walls formed from the local materials were applied to the slope to provide the desire stability.