According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of eval...The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.展开更多
According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of...According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.展开更多
This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the gene...This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the general form of the Mindlin’s solution and Loganathan-Poulos formula can comprehensively consider the in-process tunneling parameters including:unbalanced face pressure,shield-soil friction,unbalanced tail grouting pressure,unbalanced secondary grouting pressure,overloading during tunneling and the ground volume loss.The method is verified by comparing with the field data from the Qinghuayuan Tunnel Project in terms of the ground surface settlements along the longitudinal and transverse direction.Due to the local settlement or heave caused by the certain tunneling parameters,the ground surface settlements calculated using current solution along the longitudinal direction presents an irregular S-shaped curve instead of the traditional S-shaped curve.Results also find that the effect of the unbalanced secondary grouting pressure and the overloading during tunneling cannot be ignored.展开更多
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金Project(2011CB013600) supported by State Key Program for Basic Research of ChinaProject(20136201110003) supported by the Education Ministry Doctoral Tutor Foundation of China+1 种基金Project(51368039) supported by the National Natural Science Foundation of ChinaProject(2013-4-94) supported by the Program of Science and Technology Research in Lanzhou City,China
文摘The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.
文摘According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.
基金support by the National Natural Science Foundation of China(Grant Nos.52108376,51738002,and 52090084)China Postdoctoral Science Foundation(Grant No.2022 T150436).
文摘This paper conducts a theoretical analysis of ground settlements due to shield tunneling in multi-layered soils which are usually encountered in urban areas.The proposed theoretical solution which is based on the general form of the Mindlin’s solution and Loganathan-Poulos formula can comprehensively consider the in-process tunneling parameters including:unbalanced face pressure,shield-soil friction,unbalanced tail grouting pressure,unbalanced secondary grouting pressure,overloading during tunneling and the ground volume loss.The method is verified by comparing with the field data from the Qinghuayuan Tunnel Project in terms of the ground surface settlements along the longitudinal and transverse direction.Due to the local settlement or heave caused by the certain tunneling parameters,the ground surface settlements calculated using current solution along the longitudinal direction presents an irregular S-shaped curve instead of the traditional S-shaped curve.Results also find that the effect of the unbalanced secondary grouting pressure and the overloading during tunneling cannot be ignored.