期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Effects of land-use patterns on soil microbial diversity and composition in the Loess Plateau,China
1
作者 ZHANG Jian GUO Xiaoqun +2 位作者 SHAN Yujie LU Xin CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第3期415-430,共16页
In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi... In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas. 展开更多
关键词 abandoned lands land-use pattern soil property diversity of soil microbe soil microbial community
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
2
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Changes in soil microbial communities induced by warming and N deposition accelerate the CO 2 emissions of coarse woody debris
3
作者 Hankun Wang Chunsheng Wu +5 位作者 Junping Liu Qi Chen Chao Li Chunjie Shu Yi Zhang Yuanqiu Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期1051-1063,共13页
Warming and nitrogen(N)deposition are two important drivers of global climate changes.Coarse woody debris(CWD)contains a large proportion of the carbon(C)in the total global C pool.The composition of soil microbial co... Warming and nitrogen(N)deposition are two important drivers of global climate changes.Coarse woody debris(CWD)contains a large proportion of the carbon(C)in the total global C pool.The composition of soil microbial communities and environmental changes(i.e.,N deposition and warming)are the key drivers of CWD decomposition,but the interactive impact between N deposition and warming on the composition of soil microbial communities and CWD decomposition is still unclear.In a laboratory experiment,we study and simulate respiration during decomposition of the CWD(C 98)of Cryptomeria japonica(CR)and Platycarya strobilacea(PL)in response to warming and N deposition over 98 days.Resuts show that either warming or N addition signifi cantly accelerated the C 98 of the two tree species by altering the soil microbial community(bacterial:fungi and G+:G–).The combined treatment(warming+N)resulted in a decomposition eff ect equal to the sum of the individual eff ects.In addition,the species composition of bacteria and fungi was obviously aff ected by warming.However,N deposition had a remarkable infl uence on G+:G–.Our results indicated that N deposition and warming will observably alter the composition and growth of the microbial community and thus work synergistically to accelerate CWD decomposition in forest ecosystems.We also present evidence that N deposition and warming infl uenced the composition and balance of soil microbial communities and biogeochemical cycling of forest ecosystems. 展开更多
关键词 WARMING N deposition Coarse woody debris DECOMPOSITION soil microbial community
下载PDF
Eff ect of prescribed burning on the small-scale spatial heterogeneity of soil microbial biomass in Pinus koraiensis and Quercus mongolica forests of China
4
作者 Xu Dou Hongzhou Yu +4 位作者 Jianyu Wang Fei Li Qi Liu Long Sun Tongxin Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期609-622,共14页
Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns ... Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems. 展开更多
关键词 Prescribed burn soil microbial biomass Spatial heterogeneity Temperate forest
下载PDF
Seasonal dynamics of soil microbial biomass C and N of Keteleeria fortunei var. cyclolepis forests with different ages 被引量:7
5
作者 Yong Wang Xiongsheng Liu +3 位作者 Fengfan Chen Ronglin Huang Xiaojun Deng Yi Jiang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2377-2384,共8页
Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational manageme... Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest. 展开更多
关键词 microbial biomass soil microbial nitrogen soil microbial carbon Seasonal variation Artifi cial forest Keteleeria fortunei var.cyclolepis
下载PDF
Functional diversity of soil microbial communities in response to supplementing 50% of the mineral N fertilizer with organic fertilizer in an oat field 被引量:5
6
作者 ZHANG Mei-jun JIA Ju-qing +2 位作者 LU Hua FENG Mei-chen YANG Wu-de 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2255-2264,共10页
The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experimen... The effects of supplementing 50%of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates.The experiment consisted of five treatments:no fertilizer(CK),mineral N fertilizer applied at 90 and 45 kg ha^(-1) N in the form of urea(U1 and U2,respectively),and U2 supplemented with organic fertilizer in the form of sheep manure at 90 and 45 kg ha^(-1) N(U2OM1 and U2OM2,respectively).Each treatment had three replications.The experiment was conducted in 2018 and 2019 in Pinglu District,Shanxi Province,China.The carbon source utilization by soil microbial communities,such as amino acids,amines,carbohydrates,carboxylic acids,and polymers,increased when 50%of the mineral N fertilizer was replaced with organic fertilizer in both years.This result was accompanied by increased richness,dominance,and evenness of the microbial communities.The utilization of amino acid,amine,and carboxylic acid carbon sources and community evenness were further improved when the organic fertilizer amount was doubled in both years.Biplot analysis indicated that amines and amino acids were the most representative of the total carbon source utilization by the soil microbial communities in both years.The highest oat yield was achieved at a total N application rate of 135 kg ha^(-1) in the treatment involving 45 kg ha^(-1) N in the form of urea and 90 kg ha^(-1) N in the form of sheep manure in both years.It was concluded that the application of 50%of the conventional rate of mineral N fertilizer supplemented with an appropriate rate of organic fertilizer enhanced both the functional diversity of soil microbial communities and oat yield.Amine and amino acid carbon sources may be used as a substitute for total carbon sources for assessing total carbon source utilization by soil microbial communities in oat fields in future studies. 展开更多
关键词 organic fertilizer Biolog-Eco soil microbial community carbon source utilization DIVERSITY OATS
下载PDF
Short Term Influence of Organic and Inorganic Fertilizer on Soil Microbial Biomass and DNA in Summer and Spring 被引量:4
7
作者 Khalil ur Rehman Zhang Ying +2 位作者 Shahla Andleeb Zhao Jiang Erinle Kehinda Olajide 《Journal of Northeast Agricultural University(English Edition)》 CAS 2016年第1期20-27,共8页
The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial bioma... The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial biomass and soil DNA. The study concluded that type of fertilizer might alter the soil microbial biomass and DNA contents. In soil treated with organic fertilizers resulted in higher concentrations of microbial biomass and DNA contents in summer as compared to spring dute to increase in temperature. Correspondingly, in case of inorganic fertilizer, concentrations of soil microbial biomass and DNA detected higher in summer instead of spring. The statistical correlation between soil microbial biomass, DNA and ODR in spring and summer along with organic and inorganic fertilizers were calculated highly significant(p>0.01). This study demonstrated the impact of fertilizers and seasonal variations on soil microbial biomass and also revealed significant correlation between soil microbial biomass and soil DNA. 展开更多
关键词 soil microbial biomass CORRELATION soil DNA FERTILIZER seasonal variation IMPACT
下载PDF
Analysis of spatiotemporal variations in the characteristics of soil microbial communities in Castanopsis fargesii forests 被引量:2
8
作者 Hongyong Qiao Yaning Luan +2 位作者 Bing Wang Wei Dai Mengsai Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1975-1984,共10页
Castanopsis fargesii is a good afforestation plants and various microorganisms play important roles in mediating the growth and ecological functions of this species.In this study,we evaluated changes in microbial comm... Castanopsis fargesii is a good afforestation plants and various microorganisms play important roles in mediating the growth and ecological functions of this species.In this study,we evaluated changes in microbial communities in soil samples from C.fargesii forests.The phospholipid fatty acid(PLFA)biomarker method was used to obtain bacteria,fungi,actinomycetes,gram-positive bacteria(G?),gram-negative bacteria(G-),aerobic bacteria,and anaerobic bacteria to investigate spatiotemporal changes in microbial communities during the growing season.The results show that soil microorganisms were mainly concentrated in the upper 20-cm layer,demonstrating an obvious surface aggregation(P<0.05).Large amounts of litter and heavy rainfall during the early growing season resulted in the highest PLFA contents for various microorganisms,whereas relatively low and stable levels were observed during other times.The dominant species during each period were bacteria.G+ or aerobic bacteria were the main bacterial populations,providing insights into the overall trends of soil bacterial PLFA contents.Due to the relative accumulation of refractory substances during the later stages of litter decomposition,the effects of fungi increased significantly.Overall,our findings demonstrate that the main factors influencing microbial communities were litter,rainfall,and soil field capacity. 展开更多
关键词 Castanopsis fargesii Phospholipid fatty acids soil microbial community Spatiotemporal variations
下载PDF
Metagenomic insights into seasonal variations in the soil microbial community and function in a Larix gmelinii forest of Mohe,China
9
作者 Tong Bao Shilin Deng +2 位作者 Kaiyue Yu Weiyi Li Airong Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第1期371-383,共13页
The eff ect of seasons on the soil microbiome in a Larix gmelinii forest of Mohe,China,where winter temperatures are generally below−40°C,was evaluated with metagenomics analysis.Taxonomic profi ling using sequen... The eff ect of seasons on the soil microbiome in a Larix gmelinii forest of Mohe,China,where winter temperatures are generally below−40°C,was evaluated with metagenomics analysis.Taxonomic profi ling using sequencing information revealed that Proteobacteria,Actinobacteria,Acidobacteria and Verrucomicrobia were the dominant phyla in spring,summer,and fall,as were Bradyrhizobium,Chthoniobacter,Streptomyces,Acid Candidatus Koribacter at the genus level.Some species that were abundant in spring and fall greatly diminished in abundance in summer.Clusters of orthologous groups(COG)of proteins,carbohydrate-active enzymes(CAZy),Kyoto Encyclopedia of Genes and Genomes(KEGG)and NCBI databases were used to elucidate the function of diverse proteins and metabolites of the microbial community of L.gmelinii forest.COG analysis showed that fewer genes were detected in spring than in fall and summer,indicating that many soil microbes in the L.gmelinii forest were not tolerant to cold.Based on KEGG analysis,some pathways in the soil microbes were activated in spring and autumn and deactivated in summer.CAZy analysis revealed that most CAZy were more active in summer than in spring or autumn and were severely inhibited in the spring.Many functional pathways,proteins,and CAZy involved in the community changes were concerned with cold or heat resistance.Therefore,the soil in the L.gmelinii forest can be a valuable resource for further research on heat and cold tolerance of soil microbes. 展开更多
关键词 soil microbial community microbial function METAGENOMIC Seasonal variation
下载PDF
Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
10
作者 ShengYun Chen MingHui Wu +1 位作者 Yu Zhang Kai Xue 《Research in Cold and Arid Regions》 CSCD 2021年第3期268-270,共3页
The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and st... The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and stores massive soil carbon. 展开更多
关键词 PERMAFROST QTP Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
下载PDF
Influence of Salt Content on Soil Microbial Biomass Carbon
11
作者 Huanqiang ZHENG Fanzhu QU +1 位作者 Kun RONG Xueping LI 《Asian Agricultural Research》 2016年第9期85-89,共5页
Soil salinization has become a global issue. Saline and alkaline arable land was taken as research object in this paper and four salt gradients were set(S1: 0.1%; S2:0. 5%; S3:0.9%; S4:1.3%). Through the addition of d... Soil salinization has become a global issue. Saline and alkaline arable land was taken as research object in this paper and four salt gradients were set(S1: 0.1%; S2:0. 5%; S3:0.9%; S4:1.3%). Through the addition of different substrates( CK: no addition of substrate; N: addition of nitrogen source; C: addition of glucose,C + N: addition of glucose and nitrogen source) to soil,it analyzed the influence of salt content on the soil microbial biomass carbon( SMBC) for the purpose of surveying the response mechanism of soil carbon turnover to salt stress. Results indicated that after addition of different substrates,the SMBC in high salt content(S3 and S4) is obviously lower than that in low salt content( S1 and S2). The decline rate of S3 and S4 is 5. 4% and 14. 2% for no addition of substrate; the decline rate is 9.0% and 24.0% for addition of nitrogen source; the decline rate is 11.5% and 28.0% for addition of carbon source; the decline rate is 19.5% and 39.5% for addition of carbon source + nitrogen source. Compared with no addition of substrates,addition of nitrogen source could not increase the SMBC. Addition of carbon source and carbon + nitrogen can significantly increase the SMBC,and the increase in low salt content soil( 80.0%- 81.0% and 58.0%- 59.0%) is obviously higher than high salt content soil( 52.0%- 69.0%and 34.0%- 50.0%). Generally,when the soil salt content is low( 0.5%),the influence of different substrate treatment is little on the SMBC,and increasing the soil salt content can obviously reduce the SMBC. 展开更多
关键词 soil microbial biomass carbon Yellow River Delta soil salt Substrate addition
下载PDF
Effects of Different Land Cover Types on Soil Microbial Biomass Carbon and Nitrogen in the Lower Reaches of Niyang River
12
作者 Heping MA Wenyin ZHAO 《Asian Agricultural Research》 2022年第1期41-45,共5页
[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the ... [Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the rational use and sustainable management of land resources in this area.[Methods]Taking the 3 types of land cover(cultivated land,grass land and forest land)in the lower reaches of Niyang River in Tibet as the research object,the contents,distribution characteristics and relationships of soil organic carbon,organic nitrogen,microbial biomass carbon,microbial biomass nitrogen and readily oxidizable organic carbon,and their relationships were studied in 0-10,10-20,20-40,40-60,and 60-100 cm soil depth.[Results]The soil organic carbon content of forest land was higher than that of grass land and cultivated land;the vertical change trend of soil organic carbon content decreased with the increase of depth(P<0.05),and it was mainly concentrated in the soil with a depth of 0-20 cm.The soil organic carbon content was significantly different among forest land,grass land and cultivated land(P<0.05),but there was no significant difference between cultivated land and grass land(P>0.05).The soil organic nitrogen content was significantly different among cultivated land,grass land,and forest land(P<0.05),but there was no significant difference between grass land and forest land(P>0.05).The readily oxidizable organic carbon,microbial biomass carbon and nitrogen in forest land were higher than that in cultivated land and grass land.The change trend of soil readily oxidizable organic carbon,microbial biomass carbon and microbial biomass nitrogen was similar to the change of soil organic carbon content,showing a significant positive correlation.In addition to being subject to land cover,soil microbial biomass carbon and nitrogen content were also subject to the interaction of factors such as soil temperature,humidity,pH and vegetation types.[Conclusions]Changes in land cover significantly affect soil organic carbon and nitrogen,readily oxidizable organic carbon,microbial biomass carbon and nitrogen content. 展开更多
关键词 soil microbial biomass carbon and nitrogen Land cover soil depths Canonical correspondence analysis(CCA)
下载PDF
Afforestation increases microbial diversity in low-carbon soils
13
作者 Xuesen Pang Chuankuan Wang +1 位作者 Chengjie Ren Zhenghu Zhou 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期14-22,共9页
Afforestation has an important role in biodiversity conservation and ecosystem function improvement.A meta-analysis was carried out in China,which has the largest plantation area globally,to quantify the effects of pl... Afforestation has an important role in biodiversity conservation and ecosystem function improvement.A meta-analysis was carried out in China,which has the largest plantation area globally,to quantify the effects of plantings on soil microbial diversity.The results showed that the overall effect of afforestation on soil microbial diversity was positive across the country.Random forest algorithm suggested that soil carbon was the most important factor regulating microbial diversity and the positive response was only found with new plantings on low-carbon bare lands but not on high-carbon farmlands and grasslands.In addition,afforestation with broadleaved species increased microbial diversity,whereas planting with conifers had no effect on microbial diversity.This study clarified the effects of plantings on soil microbial diversity,which has an important implication for establishing appropriate policies and practices to improve the multiple functionalities(e.g.,biodiversity conservation and climate change mitigation)during plantation establishment. 展开更多
关键词 AFFORESTATION microbial diversity soil microbial communities Species-energy theory Plantations
下载PDF
Effects of coal-fired power plants on soil microbial diversity and community structures
14
作者 Bowen Sun Renbin Zhu +6 位作者 Yu Shi Wanying Zhang Zeming Zhou Dawei Ma Runfang Wang Haitao Dai Chenshuai Che 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期206-223,共18页
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power... Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants.However,the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking.Here,we collected the samples of power plant soils(PS),coal-stacking soils(CSS)and agricultural soils(AS)around three coal-fired power plants and background control soils(BG)in Huainan,a typical mineral resource-based city in East China,and investigated the microbial diversity and community structures through a high-throughput sequencing technique.Coal-stacking significantly increased(p<0.05)the contents of total carbon,total nitrogen,total sulfur and Mo in the soils,whereas the deposition of atmospheric pollutants enhanced the levels of V,Cu,Zn and Pb.Proteobacteria,Actinobacteria,Thaumarchaeota,Thermoplasmata,Ascomycota and Basidiomycota were the dominant taxa in all soils.The bacterial community showed significant differences(p<0.05)among PS,CSS,AS and BG,whereas archaeal and fungal communities showed significant differences(p<0.01)according to soil samples around three coal-fired power plants.The predominant environmental variables affecting soil bacterial,archaeal and fungal communities were Mo-TN-TS,Cu-V-Mo,and organic matter(OM)-Mo,respectively.Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants.This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants. 展开更多
关键词 Coal-fired power plants soil microbial communities Coal-stacking Heavy metals Environmental variables
原文传递
Deep soil microbial carbon metabolic function is important but often neglected:a study on the Songnen Plain reed wetland,Northeast China 被引量:1
15
作者 Zhen-Di Liu Yan-Yu Song +5 位作者 Xiu-Yan Ma Jia-Bao Yuan Yan-Jing Lou Chen Yang Hao-Ran Tang Chang-Chun Song 《Fundamental Research》 CSCD 2023年第6期833-843,共11页
Soil microbial carbon metabolism is critical in wetland soil carbon cycling,and is also a research hotspot at present.However,most studies focus on the surface soil layer in the wetlands and the microorganisms associa... Soil microbial carbon metabolism is critical in wetland soil carbon cycling,and is also a research hotspot at present.However,most studies focus on the surface soil layer in the wetlands and the microorganisms associated with this layer.In this study,0-75 cm soil profiles were collected from five widely separated reed wetlands in the Songnen Plain,which has a large number of middle-high latitude inland saline-sodic wetlands.The Biolog-ECO method was used to determine the carbon metabolic activity and functional diversity of soil microorganisms.The results showed that soil carbon metabolic activity decreased with increasing soil depth.The carbon metabolic activity of soil microorganisms in the 60-75 cm layer was approximately 57.41%-74.60%of that in the 0-15 cm layer.The soil microbial Shannon index and utilization rate of amines decreased with an increase in soil depth,while the Evenness index and utilization rate of polymers tended to increase with soil depth.Dissolved organic carbon(DOC)is the most important factor affecting microbial carbon source utilization preference,because microorganisms mainly obtain the carbon source from DOC.The result of the correlation analysis showed that the soil microbial carbon metabolic activity,Shannon index,and Evenness index significantly correlated with soil total carbon(TC),microbial biomass carbon(MBC),DOC,total nitrogen(TN),ammonium nitrogen(NH_(4)^(+)-N),nitrate nitrogen(NO_(3)_(−)-N)contents,and electrical conductivity(EC).This study emphasized the important role of microbial carbon metabolic function in deep soil. 展开更多
关键词 soil profiles soil microbial functional diversity Biolog-ECO Substrate utilization WETLAND
原文传递
Recurring heavy rainfall resulting in degraded-upgraded phases in soil microbial networks that are reflected insoil functioning
16
作者 George P.Stamou Nikolaos Monokrousos +1 位作者 Anastasia Papapostolou Effimia M.Papatheodorou 《Soil Ecology Letters》 CSCD 2023年第3期75-88,共14页
Biological soil crusts(BSCs)are an important multi-trophic component of arid ecosystems in the Mediterranean region.In a mesocosm experiment,the authors investigated how the network of interactions among the members o... Biological soil crusts(BSCs)are an important multi-trophic component of arid ecosystems in the Mediterranean region.In a mesocosm experiment,the authors investigated how the network of interactions among the members of the soil microbial communities in four types of soil sample responded when soils were exposed to two simulated extreme rain events.The four types of soil samples were:covered by Cladonia rangiformis and previously hydrated(+BSC+H),covered by C.rangiformis and dried(+BSC-H),uncovered and hydrated(-BSC+H),uncovered and dried(-BSC-H).Network analysis was based on the co-occurrence patterns of microbes;microbes were assessed by the phospholipid fatty acids analysis.The authors further explored the relations between networks’metrics and soil functions denoted by enzymatic activity and soil chemical variables.All networks exhibited Small world properties,moderate values of clustering coefficient and eigen centrality,indicating the lack of hub nodes.The networks in-BSC-H soils appeared coherent during the pre-rain phases and they became modular after rains,while those in+BSC-H soils kept their connectivity till the second rain but this then collapsed.The network metrics that were indicative of cohesive networks tended to be related to enzyme activity while those that characterized the loose networks were related to Ca,K,Mg,NH_(4)^(+) and organic N.In all mesocosms except for+BSC-H,networks’fragmentation after the second heavy rain was milder than after the first one,supporting the idea of community acclimatization.The response of microbial networks to heavy rains was characterized by the tendency to exhibit degradation-reconstruction phases.The network collapse in the crusted only mesocosms showed that the communities beneath crusts in arid areas were extremely vulnerable to recurring heavy rain events. 展开更多
关键词 PLFAS Cladonia rangiformis biocrust soil microbial community network metrics
原文传递
Effects of Different Chinese Hickory Husk Returning Modes on Soil Nutrition and Microbial Community in Acid Forest Soil
17
作者 Qian Liu Sayikal Duyxanale +5 位作者 Yongqian Tang Xinyu Shen Yuanlai Zhao Xinru Ma Shuai Shao Chenfei Liang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期943-954,共12页
Chinese hickory(Carya cathayensis Sarg.)is an important economic forest in Southeastern China.A large amount of hickory husk waste is generated every year but with a low proportion of returning.Meanwhile,intensive man... Chinese hickory(Carya cathayensis Sarg.)is an important economic forest in Southeastern China.A large amount of hickory husk waste is generated every year but with a low proportion of returning.Meanwhile,intensive management has resulted in soil degradation of Chinese hickory plantations.This study aims to investigate the effects of three Chinese hickory husk returning modes on soil amendment,including soil acidity,soil nutrition,and microbial community.The field experiment carried out four treatments:control(CK),hickory husk mulching(HM),hickory husk biochar(BC),and hickory husk organic fertilizer(OF).The phospholipid fatty acid(PLFA)biomarker method was employed to determine the soil microbial community.After one year of treatment,the results showed that:(i)HM and BC significantly increased soil pH by 0.33 and 1.71 units,respectively;(ii)HM,BC and OF treatments significantly increased the soil organic carbon,alkaline nitrogen,available phosphorous,and available potassium.The OF treatment demonstrated the most significant improvement in the soil nutrient;(iii)The soil microbial biomass significantly increased in the HM,BC and OF treatments,and all microbial groups showed an increasing trend.HM treatment increased the fungal/bacterial ratio(F/B).The OF treatment significantly decreased the Shannon-Wiener diversity(H’)and evenness index(J)of the microbial community(P<0.05).Considering the treatments effects,costs,and ease of operation,our recommended returning modes of Chinese hickory husk are mulching and organic fertilizer produced by composting with manure. 展开更多
关键词 Chinese hickory husk organic fertilizer BIOCHAR MULCHING phospholipid fatty acids soil microbial community
下载PDF
Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells
18
作者 Arpita Nandy Daniel Farkas +4 位作者 Belén Pepió-Tárrega Sandra Martinez-Crespiera Eduard Borràs Claudio Avignone-Rossa Mirella Di Lorenzo 《Environmental Science and Ecotechnology》 SCIE 2023年第4期106-116,共11页
Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies.Soil microbial fuel cell(SMFC)technology has great potential for carbon-neutral bioenergy ... Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies.Soil microbial fuel cell(SMFC)technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation.In this study,an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time.An innovative carbon nanofibers electrode doped with Fe(CNFFe)is used as cathode material in membrane-less SMFCs,and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth(PtC),carbon cloth,or graphite felt(GF)as the cathode.Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm.The results show that CNFFe and PtC generate very stable performances,with a peak power density(with respect to the cathode geometric area)of 25.5 and 30.4 mW m^(−2),respectively.The best electrochemical performance was obtained with GF,with a peak power density of 87.3 mW m^(−2).Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities.The anodes were predominantly enriched with Geobacter and Pseudomonas species,while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria,indicating H_(2)cycling as a possible electron transfer mechanism.The presence of nitrate-reducing bacteria,combined with the results of cyclic voltammograms,suggests microbial nitrate reduction occurred on GF cathodes.The results of this study can contribute to the development of effective SMFC design strategies for field implementation. 展开更多
关键词 soil microbial fuel cells ORR catalyst Carbon nanofibre microbial profiling
原文传递
Soil microbial attributes along a chronosequence of Scots pine(Pinus sylvestris var. mongolica) plantations in northern China 被引量:3
19
作者 Xiaodong YAO Wenjing ZENG +1 位作者 Hui ZENG Wei WANG 《Pedosphere》 SCIE CAS CSCD 2020年第4期433-442,共10页
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav... Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs. 展开更多
关键词 soil microbial metabolism quotient(gCO2) soil basal respiration soil depth soil microbial biomass soil organic matter dynamics soil potential extracellular enzyme activity stand age
原文传递
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:2
20
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部