[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen...[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.展开更多
[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like ...[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.展开更多
Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil ...Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase activity, the soil pH in this experiment was negatively correlated with soil microbial properties. In conclusion, soil microbial properties reflect changes of soil quality and thus can be used as bio-indicators of soil health.展开更多
Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter in...Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter into the soil, and a temporary sink for nutrients. This review describes several factors controlling the dynamics of soil microbial biomass. These factors mainly include organic carbon and nitrogen limitation, residue and nutrient management, differences in plant species, soil texture, soil moisture and temperature. On the basis of detailed analysis, it is reasonable that future research would be focused on the impact of land use change on soil MB in tropical and subtropical ecosystems.展开更多
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly aff...The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.展开更多
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d...A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.展开更多
Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the e...Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showedthat in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) wererelatively low in the content but highly correlated with each other. After rubber tapping, soil MBCof mature rubber fields decreased significantly, by 55.5 percent. compared with immature rubberfields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOCdecreased significantly. The decreasing trend of MBC stopped at about ten years of rubbercultivation. After this period, soil MBC increased relatively while soil TOC still kept indecreasing. Soil MBC changes could be measured to predict the tendency of soil organic matterchanges due to management practices in a tropical rubber farm several years before the changes insoil TOC become detectable.展开更多
An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to exam...An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.展开更多
Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in fa...Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.展开更多
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and mic...Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.展开更多
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anae...The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.展开更多
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ...The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.展开更多
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o...Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.展开更多
This study was designed to understand the impact of methyl bromide (MB) (CH3Br) and its alternatives on both free-living and root-knot nematodes in the soil. A randomized complete block experiment with six treatments ...This study was designed to understand the impact of methyl bromide (MB) (CH3Br) and its alternatives on both free-living and root-knot nematodes in the soil. A randomized complete block experiment with six treatments and 4 replicates (each replicate in a separate greenhouse) was established in Qingzhou, Shandong Province, China. In addition to MB and untreated control (CK) treatments there were four alternative soil fumigation practices including MB+virtually impermeable films (VIF), metam sodium (MS), MS +VIF and soil solarization combined with selected biological control agents (SS+BCA). Two tomato (Lycopersicum esculentum Mill.) cultivars, cv. Maofen-802 from the Xian Institute of Vegetable Science, China, and cv. AF179 Brillante from the Israeli Hazera Quality Seeds, were selected as test crops. The results indicated that Rhabditidae was the most dominant population with percentage abundance as high as 85% of the total number of identified free-living nematodes, followed by that of Cephalobidae. Methyl bromide and its alternatives except for the non-chemical SS+BCA treatment controlled the target pest, root-knot nematodes. Also, the impact of the three chemical alternatives on free-living nematode number and functional group abundance was similar to the impact associated with a typical methyl bromide application. Chemical fumigation practices, especially that with MB, significantly reduced the number of nematodes in the soil and simultaneously significantly reduced the number of nematode genera thereby reducing nematode diversity. All the four soil chemical fumigation activities decreased soil microbial biomass and had an obvious initial impact on microorganism biomass. Furthermore, both plant-parasitic and fungivore nematodes were positively correlated with soil microbial biomass.展开更多
Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational manageme...Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.展开更多
A laboratory incubation experiment was conducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil. Treatments included the application of...A laboratory incubation experiment was conducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil. Treatments included the application of lead at six different levels i.e., 0 (background), 100, 200, 300, 450 and 600 μg g -1 soil along with each of the four levels of zinc (0, 50, 150 or 250 μg g -1 soil). Application of lead or zinc alone to soil significantly ( P <0.001) affected the soil microbial biomass. The microbial biomass carbon (C mic ), biomass nitrogen (N mic ) and biomass phosphorus (P mic ) decreased sharply in soils contaminated with lead or zinc. Combined application of lead and zinc resulted in a greater biocidal effect on soil microbial biomass, which was significantly higher ( P <0.001) than that when either lead or zinc was applied alone. Consistent increase in the biomass C:N and decline in the biomass C:P ratios were also observed with the increased metal (Pb and Zn) toxicity in the soil.展开更多
Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial bi...Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.展开更多
A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1)...A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.展开更多
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial bio...A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.展开更多
The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial bioma...The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial biomass and soil DNA. The study concluded that type of fertilizer might alter the soil microbial biomass and DNA contents. In soil treated with organic fertilizers resulted in higher concentrations of microbial biomass and DNA contents in summer as compared to spring dute to increase in temperature. Correspondingly, in case of inorganic fertilizer, concentrations of soil microbial biomass and DNA detected higher in summer instead of spring. The statistical correlation between soil microbial biomass, DNA and ODR in spring and summer along with organic and inorganic fertilizers were calculated highly significant (p〉0.01). This study demonstrated the impact of fertilizers and seasonal variations on soil microbial biomass and also revealed significant correlation between soil microbial biomass and soil DNA.展开更多
基金Supported by the grands from National Sugarcane Industry Technology System(CARS-20-3-5)Science and Technology Development Foundation of Guangxi Academy of Agricultural Science(GNK 2015JZ31 GNK 2013JZ13,200905Zji)~~
文摘[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.
基金Supported by the National Natural Science Foundation of China(41101484)Swiss National Science Foundation PZ00P2(142232)~~
文摘[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.
基金funded by the National Natural Science Foundation of China(30471012)the 973 Priority Fund under the auspices of the Ministry of Science and Technology,China(2001CCB00800,2003CCB00300)+1 种基金the Special Fund for the Chinese State-Level Academy's Scientific Research(2007-37)the Fund for the Elitist of the Chinese Academy of Agricultural Sciences(CAAS).
文摘Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase activity, the soil pH in this experiment was negatively correlated with soil microbial properties. In conclusion, soil microbial properties reflect changes of soil quality and thus can be used as bio-indicators of soil health.
基金This study was supported by the Teaching and Research Award program for MOE P. R. C. (TRAPOYT)
文摘Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter into the soil, and a temporary sink for nutrients. This review describes several factors controlling the dynamics of soil microbial biomass. These factors mainly include organic carbon and nitrogen limitation, residue and nutrient management, differences in plant species, soil texture, soil moisture and temperature. On the basis of detailed analysis, it is reasonable that future research would be focused on the impact of land use change on soil MB in tropical and subtropical ecosystems.
基金Project supported by the National Natural Science Foundation of China (No. 40025104).
文摘The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.
文摘A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999011809)the United Nations Development Programme (UNDP, No. CPR/96/105).
文摘Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showedthat in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) wererelatively low in the content but highly correlated with each other. After rubber tapping, soil MBCof mature rubber fields decreased significantly, by 55.5 percent. compared with immature rubberfields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOCdecreased significantly. The decreasing trend of MBC stopped at about ten years of rubbercultivation. After this period, soil MBC increased relatively while soil TOC still kept indecreasing. Soil MBC changes could be measured to predict the tendency of soil organic matterchanges due to management practices in a tropical rubber farm several years before the changes insoil TOC become detectable.
基金the National Natural Science Foundation of China (No.40321101)the Ministry of Science and Technology of China (No.2005CB121105) the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX1-SW-19 and KZCX2-YW-408).
文摘An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.
基金the National Key Basic Research Support Foundation of China (No.2005CB121105)theNational Natural Science Foundation of China (No.30670379).
文摘Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2012BAD22B04)CFERN&GENE Award Funds on Ecological PaperNational Natural Science Foundation of China(No.30900208)
文摘Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.
基金the National Natural Science Foundation of China(Nos.49890330,39770425 and 30070429) the National Key Basic Research Support Foundation of China(No.G1999011707).
文摘The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.
文摘The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.
基金Project supported by the National Natural Science Foundation of China (No. 40231016) the National Science Foundation of America (No. DEB-00-01686).
文摘Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.
基金Project supported by the Sino-Italy Environmental Cooperation Fund.
文摘This study was designed to understand the impact of methyl bromide (MB) (CH3Br) and its alternatives on both free-living and root-knot nematodes in the soil. A randomized complete block experiment with six treatments and 4 replicates (each replicate in a separate greenhouse) was established in Qingzhou, Shandong Province, China. In addition to MB and untreated control (CK) treatments there were four alternative soil fumigation practices including MB+virtually impermeable films (VIF), metam sodium (MS), MS +VIF and soil solarization combined with selected biological control agents (SS+BCA). Two tomato (Lycopersicum esculentum Mill.) cultivars, cv. Maofen-802 from the Xian Institute of Vegetable Science, China, and cv. AF179 Brillante from the Israeli Hazera Quality Seeds, were selected as test crops. The results indicated that Rhabditidae was the most dominant population with percentage abundance as high as 85% of the total number of identified free-living nematodes, followed by that of Cephalobidae. Methyl bromide and its alternatives except for the non-chemical SS+BCA treatment controlled the target pest, root-knot nematodes. Also, the impact of the three chemical alternatives on free-living nematode number and functional group abundance was similar to the impact associated with a typical methyl bromide application. Chemical fumigation practices, especially that with MB, significantly reduced the number of nematodes in the soil and simultaneously significantly reduced the number of nematode genera thereby reducing nematode diversity. All the four soil chemical fumigation activities decreased soil microbial biomass and had an obvious initial impact on microorganism biomass. Furthermore, both plant-parasitic and fungivore nematodes were positively correlated with soil microbial biomass.
文摘Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.
文摘A laboratory incubation experiment was conducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil. Treatments included the application of lead at six different levels i.e., 0 (background), 100, 200, 300, 450 and 600 μg g -1 soil along with each of the four levels of zinc (0, 50, 150 or 250 μg g -1 soil). Application of lead or zinc alone to soil significantly ( P <0.001) affected the soil microbial biomass. The microbial biomass carbon (C mic ), biomass nitrogen (N mic ) and biomass phosphorus (P mic ) decreased sharply in soils contaminated with lead or zinc. Combined application of lead and zinc resulted in a greater biocidal effect on soil microbial biomass, which was significantly higher ( P <0.001) than that when either lead or zinc was applied alone. Consistent increase in the biomass C:N and decline in the biomass C:P ratios were also observed with the increased metal (Pb and Zn) toxicity in the soil.
基金Foundation project: This research was supported by Chinese Academy of Science Program (N0. ZCX3-SW-418) and the Natural Science Foundation of China (N0. 30470303)
文摘Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.
文摘A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.
文摘A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.
基金Supported by the University Science and Technology Innovation Team Construction Projects of Heilongjiang Province(2013 TD003)
文摘The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial biomass and soil DNA. The study concluded that type of fertilizer might alter the soil microbial biomass and DNA contents. In soil treated with organic fertilizers resulted in higher concentrations of microbial biomass and DNA contents in summer as compared to spring dute to increase in temperature. Correspondingly, in case of inorganic fertilizer, concentrations of soil microbial biomass and DNA detected higher in summer instead of spring. The statistical correlation between soil microbial biomass, DNA and ODR in spring and summer along with organic and inorganic fertilizers were calculated highly significant (p〉0.01). This study demonstrated the impact of fertilizers and seasonal variations on soil microbial biomass and also revealed significant correlation between soil microbial biomass and soil DNA.