期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
Relationship Between Soil Microbial Biomass C and N and Mineralizable Nitrogen in Some Arable Soils on Loess Plateau 被引量:14
1
作者 ZHOUJIANBIN LISHENGXIU 《Pedosphere》 SCIE CAS CSCD 1998年第4期349-354,共6页
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ... The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils. 展开更多
关键词 矿化作用 土壤微生物 耕地 黄土高原
下载PDF
Soil Microbial Biomass Nitrogen and Its Relationship to Uptake of Nitrogen by Plants 被引量:27
2
作者 ZHOUJIANBIN LISHENGXIU 《Pedosphere》 SCIE CAS CSCD 2002年第3期251-256,共6页
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anae... The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant. 展开更多
关键词 无机氮 植株氮 相关性 土壤氮 土壤微生物氮 生物量
下载PDF
Effect of Long-Term Straw Incorporation on SoilMicrobial Biomass and C and N Dynamics 被引量:10
3
作者 SHENRENFANG P.C.BROOKES 《Pedosphere》 SCIE CAS CSCD 1997年第4期297-302,共6页
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial bio... A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils. 展开更多
关键词 微生物 土壤 动力学分析 稻草
下载PDF
Microbial Biomass Carbon and Total Organic Carbon of Soils as Affected by Rubber Cultivation 被引量:35
4
作者 ZHANG Hua and ZHANG Gan-LinInstitute of Soil Science, the Chinese Academy of Sciences, P. O. Box 821, Nanjing 210008 《Pedosphere》 SCIE CAS CSCD 2003年第4期353-357,共5页
Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the... Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showed that in the tropical rubber farm,soil microbial biomass C (MBC) and total organic C (TOC) were relatively low in the content but highly correlated with each other. After rubber tapping, soil MBC of mature rubber fields decreased significantly,by 55.5%, compared with immature rubber fields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOC decreased significantly. The decreasing trend of MBC stopped at about ten years of rubber cultivation. After this period, soil MBC increased relatively while soil TOC still kept in decreasing. Soil MBC changes could be measured to predict the tendency of soil organic matter changes due to management practices in a tropical rubber farm several years before the changes in soil TOC become detectable. 展开更多
关键词 微生物 细菌 橡胶 土壤标本
下载PDF
Effect of land use on microbial biomass-C, -N and -P in red soils 被引量:11
5
作者 陈国潮 何振立 《Journal of Zhejiang University Science》 EI CSCD 2003年第4期480-484,共5页
Eleven red soils varying in land use and fertility status were used to examine the effect of land useon microbial biomass -C, -N and -P. Microbial biomass-C in the red soils ranged from about 68 rag C/kg to 225 mg C/... Eleven red soils varying in land use and fertility status were used to examine the effect of land useon microbial biomass -C, -N and -P. Microbial biomass-C in the red soils ranged from about 68 rag C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low or-ganic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil Cmic.The Cmic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between Cmic and organic matter content, suggesting that the influence of land use on Cmie is mainly related to the input and ac-cumulation of organic matter. Microbial biomass-N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg andwas also affected by land use. The change of Nmic with land use was similar to that of Cmic. The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The Nmic was significantly correlated with soil total N and available N. Microbial biomass-P in the soils ranged from 4.5 mg P/kg to 52.3 rag P/kg. The microbial C/P ratio was in the range of 4-23. The Pmic was relatively less affected by land use due to differences in fertili-zation practices for various land use systems. 展开更多
关键词 红土 土壤微生物 土地利用 微生物量
下载PDF
Long-Term Impact of Soil Management on Microbial Biomass C, N and P in Rice-Based Cropping System 被引量:4
6
作者 GAO YAJUN, HUANG DONGMAI, ZHU PEILI, WANG ZHIMING and LI SHENGXIU Soil and Fertilizer Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China) College of Resources and Environment, Northwestern Science and Technology University of Agric 《Pedosphere》 SCIE CAS CSCD 2001年第4期349-357,共9页
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Fiv... A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil. 展开更多
关键词 施肥 微生物 数量 法地管理 稻田 土壤管理
下载PDF
Effects of Lanthanum on Microbial Biomass Carbon and Nitrogen in Red Soil 被引量:1
7
作者 褚海燕 朱建国 +3 位作者 谢祖彬 曹志洪 李振高 曾青 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第1期63-66,共4页
The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of ric... The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted. 展开更多
关键词 rare earths LAnTHAnUM red soil microbial biomass c microbial biomass n
下载PDF
Changes of Soil Microbial Biomass C and P During Wheat Growth After Application of Fertilizers 被引量:3
8
作者 SHEN QIRONG WANG YAN CHEN WEI and SHI RUIHE Nanjing Agricultural University, Nanjing 210095 China) 《Pedosphere》 SCIE CAS CSCD 1997年第3期225-230,共6页
A pot experiment was carried out with a clay loam in a green house. The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradual... A pot experiment was carried out with a clay loam in a green house. The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradually decreased with declining of the temperature. The soil biomass C increased at the tillering stage when the temperature gradually increased, and rose to the highest value at the anthesis stage, being about 554.9-794.4 mg C kg-1. The application of organic manure resulted in the highest increase in biomass C among the fertilization treatments while that of ammonium sulphate gave the lowest. At the harvest time the soil biomass C decreased to the presowing level. Like the soil biomass C the amount of biomass P was increased by the incorporation of organic manure and was the highest among the treatments, with the values of the check and ammonium sulphate treatments being the lowest. Meanwhile, the changing patterns of the C/P ratio of soil microbial biomass at stages of wheat growth are also described. 展开更多
关键词 土壤 微生物 数量 冬小麦 肥料
下载PDF
Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert,Xinjiang 被引量:23
9
作者 BingChang ZHANG XiaoBing ZHOU YuanMing ZHANG 《Journal of Arid Land》 SCIE CSCD 2015年第1期101-109,共9页
Biological soil crusts (BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformat... Biological soil crusts (BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformation in BSCs. However, little is known about microbial activities and physical-chemical properties of BSCs in the Gurbantunggut Desert, Xinjiang, China. In the present research, a sampling line with 1-m wide and 20-m long was set up in each of five typical interdune areas selected randomly in the Gurbantunggut Desert. Within each sampling line, samples of bare sand sheet, algal crusts, lichen crusts and moss crusts were randomly collected at the depth of 0-2 cm. Varia- tions of microalgal biomass, microbial biomass, enzyme activities and soil physical-chemical properties in different succession of BSCs were analyzed. The relationships between microalgal biomass, microbial biomass, enzymatic activities and soil physical-chemical properties were explored by stepwise regression. Our results indicate that micro- algal biomass, microbial biomass and most of enzyme activities increased as the BSCs developed and their highest values occurred in lichen or moss crusts. Except for total K, the contents of most soil nutrients (organic C, total N, total P, available N, available P and available K) were the lowest in the bare sand sheet and significantly increased with the BSCs development, reaching their highest values in moss crusts. However, pH values significantly decreased as the BSCs developed. Significant and positive correlations were observed between chlorophyll a and microbial biomass C. Total P and N were positively associated with chlorophyll a and microbial biomass C, whereas there was a significant and negative correlation between microbial biomass and available P. The growth of cyanobacteria and microorganism contributed C and N in the soil, which offered substrates for enzyme activities thus increasing enzyme activities. Probably, improvement in enzyme activities increased soil fertility and promoted the growth of cyanobacteria, eukary- otic algae and heterotrophic microorganism, with the accelerating succession of BSCs. The present research found that microalgal-microbial biomass and enzyme activities played important roles on the contents of nutrients in the successional stages of BSCs and helped us to understand developmental mechanism in the succession of BSCs. 展开更多
关键词 chlorophyll a microbial biomass c soil enzyme physical-chemical properties biological soil crusts
下载PDF
Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest 被引量:6
10
作者 Serdar Akburak Yowhan Son +1 位作者 Ender Makineci Meric Cakir 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期683-692,共10页
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low... Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences. 展开更多
关键词 c/n Exchangeable cations microbial biomass carbon qcO_2 soil pH
下载PDF
Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China 被引量:5
11
作者 Zhangquan Zeng Silong Wang +4 位作者 Canming Zhang Hong Tang Xiquan Li Zijian Wu Jia Luo 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期673-678,共6页
To better understand the effects of forest suc- cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succes... To better understand the effects of forest suc- cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succession chronosequence. The study compared a pine (Pinus mas- soniana) forest (PF), a pine and broadleaf mixed forest (MF) and an evergreen broadleaf forest (BF), in the Yingzuijie Biosphere Reserve, Hunan Province, China. Results showed that soil nutrients in the MF and BF plots were higher than in the PF plots. The range in microbial biomass carbon followed a similar pattem with Be havingthe greatest values, 522-1022 mg kg-1, followed by Mr 368-569 mg kg-1, and finally, PF 193--449 mg kg-1. Soil nutrients were more strongly correlated with microbial biomass carbon than basal respiration or metabolic quo- tient. Overall, forest succession in the study site improved soil microbial properties and soil fertility, which in turn can increase primary productivity and carbon sequestration. 展开更多
关键词 Keywords qcO2 soil microbial biomass c soil nutrient
下载PDF
Influence of chlorsulfuron herbicide on size of microbial biomass in the soil 被引量:1
12
作者 El-Ghamry, A.M. Huang, Chang-Yong Xu, Jian-Ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期13-18,共6页
A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate ... A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate 0\^01 (FR), 0\^1 (10FR) and 1 (100FR) μg/g. Determinations of microbial biomass C content and microbial biomass N content were carried out 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicide application. In comparison to untreated soil, the microbial biomass carbon and biomass nitrogen decreased significantly in soil treated with herbicide in levels 10FR and 100FR within the first 10 days incubation. A more considerable increase in the microbial biomass C∶N ratio was observed in the herbicide treated soil than the non treated control. This effect was transitory and only at the higher rates of chlorsulfuron was significant. 展开更多
关键词 cHLORSULFUROn microbial biomass c microbial biomass n biomass c/n cLc number: X592 Document code: A
下载PDF
Effect of Ammonium Fixation on Determination of N Mineralized from Soil Microbial Biomass 被引量:2
13
作者 YINSHIXUE LIANGYONGCHAO 《Pedosphere》 SCIE CAS CSCD 1997年第2期127-132,共6页
Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass.... Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method. 展开更多
关键词 铵固定 微生物 氮矿化 土壤
下载PDF
Fumigation-Extraction Method for Measurement of Microbial Biomass-N in Red Soils 被引量:1
14
作者 SHENGUOCHAO HEZHENLI 《Pedosphere》 SCIE CAS CSCD 1997年第1期87-91,共5页
关键词 熏蒸抽提方法 微生物生物氮 红壤 测定
下载PDF
Size of Microbial Biomass in Soils of China
15
作者 WANG YAN, SHEN QIRONG, YANG ZHENGNING and YU LING(Nanjing Agricultural Univertity, Nanjing 210095(China)) 《Pedosphere》 SCIE CAS CSCD 1994年第3期265-272,共8页
SizeofMicrobialBiomassinSoilsofChinaWANGYAN,SHENQIRONG,YANGZHENGNINGandYULING(NanjingAgriculturalUnivertity,... SizeofMicrobialBiomassinSoilsofChinaWANGYAN,SHENQIRONG,YANGZHENGNINGandYULING(NanjingAgriculturalUnivertity,Nanjing210095(Chi... 展开更多
关键词 fumigation-extraction c:n and c.P ratios. soil microbial biomass
全文增补中
Soil Aggregates, Organic Matter, and Labile C and N Fractions after 37 Years of N, P and K Applications to an Irrigated Subtropical Soil under Maize-Wheat Rotation 被引量:3
16
作者 S. Kumar M. S. Aulakh A. K. Garg 《Journal of Agricultural Science and Technology(A)》 2011年第2X期170-181,共12页
关键词 土壤团聚体 亚热带土壤 应用程序 不稳定 有机质 玉米 灌溉 五氧化二磷
下载PDF
Soil Carbon Sequestration,Water Use Efficiency(WUE) and Biological Nitrogen Fixation(BNF) Under Conservation Agriculture in Rain-fed Dry Area of North-west Pakistan
17
作者 Samreen Shehzadi Wisal Mohammad S.Mahmood Shah 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期233-233,共1页
Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated a... Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated area is rain-fed and the crop productivity is low.Conservation agriculture reduces greenhouse gas emissions by enhancing soil carbon sequestration and then improved soil fertility,WUE and crop productivity.A field experiment 展开更多
关键词 soil carbon sequestration BnF water use efficiency crop residue TILLAGE soil microbial biomass c and n
下载PDF
How Physical Disturbance and Nitrogen Addition Affect the Soil Carbon Decomposition?
18
作者 Muhammad Junaid Nazir Xiuwei Zhang +1 位作者 Daolin Du Feihai Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第9期2087-2097,共11页
The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not ful... The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not fully understood.Here,we conducted a 60 days incubation experiment to test the effects of physical disturbance and nitrogen(N)addition on SOC decomposition.N addition increased the concentration of NO3-by 51%in the soil,but had little effect on the concentration of NH4+.N addition inhibited SOC decomposition,but such an effect differed between disturbed and undisturbed soils.In disturbed and undisturbed soils,application of N decreased SOC decomposition by 37%and 15%,respectively.One possible explanation is that extra N input suppressed microbial N mining and/or increased the stability of soil organic matter by promoting the formation of soil aggregates and incorporating part of the inorganic N into organic matter,and consequently decreased microbial mineralization of soil organic matter.Physical disturbance intensified the inhibition of N on SOC decomposition,likely because physical disturbance allowed the added N to be better exposed to soil microbes and consequently increased the availability of added N.We conclude that physical disturbance and N play important roles in modulating the stability of SOC. 展开更多
关键词 soil organic matter physical disturbance microbial n mining microbial biomass carbon n availability
下载PDF
Four years of free-air CO_2 enrichment enhance soil C concentrations in a Chinese wheat field 被引量:2
19
作者 ZHONG Shuang LIANG Wenju +2 位作者 LOU Yilai LI Qi ZHU Jianguo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1221-1224,共4页
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass... Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study. 展开更多
关键词 dissolved organic c free air cO2 enrichment microbial biomass c n fertilization soil basal respiration soil organic c
下载PDF
The Importance of Three Protozoa in Corn Straw Decomposition and Nutrient Transformation 被引量:2
20
作者 LIU Hai-ming, ZHAO Xiao-rong, LI Gui-tong and LIN Qi-mei(Department of Soil and Water Sciences, China Agricultural University , Beijing 100094 , P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2003年第8期886-889,共4页
Three typical soil protozoa of Bodo edax, Colpoda cucullus and Amoeba proteus were inoculated into the soil amended with corn straw. The soils were then incubated at 25℃ for 60 days. It was found that the protozoa, p... Three typical soil protozoa of Bodo edax, Colpoda cucullus and Amoeba proteus were inoculated into the soil amended with corn straw. The soils were then incubated at 25℃ for 60 days. It was found that the protozoa, particularly Bodo edax, significantly reduced soil microbial biomass C. However, the decomposition of corn straw was accelerated by the protozoa. Colpoda cucullus significantly enhanced soil available P content, but Amoeba proteus decreased soil available P content. Colpoda cucullus and Bodo edax did not obviously influence NH4+-N and NO3--N contents. In contrast, Amoeba proteus significantly increased both NH4+-N and NO3--N contents. 展开更多
关键词 soil protozoa corn straw soil microbial biomass c
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部