期刊文献+
共找到301篇文章
< 1 2 16 >
每页显示 20 50 100
Responses of soil microbial respiration to plantations depend on soil properties in subtropical China 被引量:1
1
作者 ZHANG Yan-jie YAN Yue +6 位作者 FU Xiang-ping YANG Jie ZHANG Su-yan XU Shan TANG Zheng LI Zhong-fang LU Shun-bao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1376-1384,共9页
Assessing the impact of plantation on microbial respiration (MR) is vitally important to understand the interactions between belowground metabolism and land use change. In this study, cumulative MR was determined by... Assessing the impact of plantation on microbial respiration (MR) is vitally important to understand the interactions between belowground metabolism and land use change. In this study, cumulative MR was determined by alkali absorption method in 1, 3, 7, 14, 21,28, 35, 42, 49, and 56 days from the soil in a representative plantations in the subtropical region of China. The treatment of plantations contained no plant (CK), orange trees (Citrus reticulata)+Bahia grass (Paspalum notatum) (GB), orange trees (C. reticulata)+Bahia grass (P. notatum)+soybean (Giycine max (L.) Merrill) (GBH). Results showed that plantation had significant effects on microbial respiration and the responses of microbial respiration to plantation from different soil layers and topographies were different: in 0-20 cm in uphill: GB〉GBH〉CK; in 20-40 cm in uphill: GBH〉CK〉GB; in 0-20 cm in downhill: GBH〉CK〉GB; in 20-40 cm in downhill: GB〉CK〉GBH. Furthermore, plantation also altered the relationships between MR and soil properties. In CK, microbial respiration was positively correlated with NH4+ and soil total N, and negatively correlated with soil moisture, pH, NO3-, and microbial biomass carbon (MBC). In GB, microbial respira- tion under GB significantly negatively correlated with dissolved organic carbon (DOC). In GBH, microbial respiration under GBH was positively correlated with NH4+, MBC, total soil carbon (TC), and total soil nitrogen (TN), and negatively correlated with soil moisture (SM), pH, NO-, and DOC. The underlying mechanisms could be attributed to soil heterogeneity and the effects of plantation on soil properties. Our results also showed that plantation significantly increased soil C storage, which suggested plantation is a key measure to enhance soil C sequestration and mitigate global CO2 emission, especially for the soil with low initial soil carbon content or bared soil. 展开更多
关键词 soil microbial respiration PLANTATION soil properties subtropical forest
下载PDF
Intensive management enhances mycorrhizal respiration but decreases free-living microbial respiration by affecting microbial abundance and community structure in Moso bamboo forest soils
2
作者 Wenhao JIN Jiangfei GE +6 位作者 Shuai SHAO Liyuan PENG Jiajia XING Chenfei LIANG Junhui CHEN Qiufang XU Hua QIN 《Pedosphere》 SCIE CAS CSCD 2024年第2期508-519,共12页
Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)component... Intensive management is known to markedly alter soil carbon(C)storage and turnover in Moso bamboo forests compared with extensive management.However,the effects of intensive management on soil respiration(RS)components remain unclear.This study aimed to evaluate the changes in different RScomponents(root,mycorrhizal,and free-living microorganism respiration)in Moso bamboo forests under extensive and intensive management practices.A1-year in-situ microcosm experiment was conducted to quantify the RScomponents in Moso bamboo forests under the two management practices using mesh screens of varying sizes.The results showed that the total RSand its components exhibited similar seasonal variability between the two management practices.Compared with extensive management,intensive management significantly increased cumulative respiration from mycorrhizal fungi by 36.73%,while decreased cumulative respiration from free-living soil microorganisms by 8.97%.Moreover,the abundance of arbuscular mycorrhizal fungi(AMF)increased by 43.38%,but bacterial and fungal abundances decreased by 21.65%and 33.30%,respectively,under intensive management.Both management practices significantly changed the bacterial community composition,which could be mainly explained by soil pH and available potassium.Mycorrhizal fungi and intensive management affected the interrelationships between bacterial members.Structural equation modeling indicated that intensive management changed the cumulative RSby elevating AMF abundance and lowering bacterial abundance.We concluded that intensive management reduced the microbial respiration-derived C loss,but increased mycorrhizal respiration-derived C loss. 展开更多
关键词 arbuscular mycorrhizal fungi extensive management microbial co-occurrence network root respiration soil organic C soil respiration structural equation model
原文传递
Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain 被引量:6
3
作者 TU Chun LI Fa-dong +3 位作者 QIAO Yun-feng ZHU Nong GU Cong-ke ZHAO Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期967-979,共13页
Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT... Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT) and no-tillage (NT) farmland for winter wheat and summer maize rotation system in North China Plain (NCP). Treatments include CT with and without warming (CTW and CTN), NT with and without warming (NTW and NTN). The results indicated that warming had no sig- nificant effect on soil moisture in irrigated farmland of NCP (P〉0.05). The elevated average soil temperature of 1.1-116℃ in crop growing periods could increase annual soil CO2 emission by 10.3% in CT filed (P〉0.05), but significantly increase it by 12.7% in NT field (P〈0.05), respectively. The disturbances such as plowing, irrigation and precipitation resulted in the obvious soil CO2 emission peaks, which contributed 36.6-40.8% of annual soil cumulative CO2 emission. Warming would enhance these soil CO2 emission peaks; it might be associated with the warming-induced increase of autotrophic respiration and heterotrophic respiration. Compared with un-warming treatments, dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) in warming treatments were significantly increased by 11.6-23.4 and 12.9-23.6%, respectively, indicating that the positive responses of DOC and MBC to warming in both of two tillage systems. Our study highlights that climate warming may have positive effects on soil C release in NCP in association with response of labile C substrate to warming. 展开更多
关键词 global warming conventional tillage NO-TILLAGE soil respiration dissolved organic carbon soil microbial biomasscarbon
下载PDF
Alteration of microbial properties and community structure in soils exposed to napropamide 被引量:4
4
作者 GUO Hua CHEN Guofeng +2 位作者 LV Zhaoping ZHAO Hua YANG Hong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第4期494-502,共9页
The effect of pesticide napropamide (N,N-diethyl-2-(1-naphthalenyloxy) propanamide) on soil microorganisms for long-term (56 d) was assessed by monitoring changes in soil microbial biological responses. Soils we... The effect of pesticide napropamide (N,N-diethyl-2-(1-naphthalenyloxy) propanamide) on soil microorganisms for long-term (56 d) was assessed by monitoring changes in soil microbial biological responses. Soils were treated with napropamide at 0, 2, 10, 20, 40, and 80 mg/kg soil and sampled at intervals of 1, 3, 7, 14, 28, 42, and 56 d. The average microbial biomass C declined in napropamide-treated soils as compared to control. The same trend was observed on microbial biomass N after napropamide application. We also determined the basal soil respiration (BSR) and observed a high level in soils treated with napropamide during the first 7 d of experiment. But with the passage of incubation time, BSR with napropamide decreased relatively to control. Application of napropamide at 2-80 mg/kg soil had inhibitory effects on the activity of urease and invertase. Activity of catalase was enhanced during the initial 7 d of napropamide application, but soon recovered to the basal level. The depressed enzyme activities might be due to the toxicity of napropamide to the soil microbial populations. To further understand the effect of napropamide on microbial communities, a PCR- DGGE-based experiment and cluster analysis of 16S rDNA community profiles were performed. Our analysis revealed an apparent difference in bacterial-community composition between the napropamide treatments and control. Addition of napropamide apparently increased the number of bands during the 7-14 d of incubation. These results imply that napropamide-induced toxicity was responsible for the disturbance of the microbial populations in soil. 展开更多
关键词 napropamide microbial respiration microbial biomass soil enzyme PCR-DGGE bacterial community
下载PDF
Soil Microbial Metabolic Quotient in Inner Mongolian Grasslands: Patterns and Influence Factors 被引量:1
5
作者 CAO Yingqiu XU Li +2 位作者 ZHANG Zhen CHEN Zhi HE Nianpeng 《Chinese Geographical Science》 SCIE CSCD 2019年第6期1001-1010,共10页
Microbial metabolic quotient(MMQ) is the rate of soil microbial respiration per unit of microbial biomass, and represents the capacity of soil microbes to utilize soil organic matter.Understanding the regional variati... Microbial metabolic quotient(MMQ) is the rate of soil microbial respiration per unit of microbial biomass, and represents the capacity of soil microbes to utilize soil organic matter.Understanding the regional variation and determinants of MMQ can help predict the responses of soil respiration rate to global climate change.Accordingly, we measured and analyzed MMQ-related data(e.g., soil basic respiration rate at 20℃ and soil microbial biomass) from 17 grassland sites, which located in meadow steppe, typical steppe, and desert steppe along a 1000-km transect across the Inner Mongolian grasslands, China.Results showed that MMQ varied significantly among the different grassland types(P < 0.05;desert > typical > meadow) and decreased from southwest to northeast(r =–0.81) with increasing latitude(r = – 0.50), and with increasing mean annual precipitation(r = –0.69).Precipitation accounted for 56% of the total variation in MMQ, whereas temperature accounted for 26%.MMQ was negatively correlated with precipitation across the Inner Mongolian grasslands.Therefore, climate change, especially in regard to precipitation, may influence soil microbial respiration and soil carbon dynamics through altering MMQ.These results highlighted the importance of spatial patterns in MMQ for accurately evaluating the responses of soil respiration to climate change at regional and global scales. 展开更多
关键词 soil respiration soil microbial biomass carbon precipitation temperature INNER MONGOLIAN GRASSLAND
下载PDF
Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China 被引量:16
6
作者 FANG Xiangmin WANG Qingli +4 位作者 ZHOU Wangming ZHAO Wei WEI Yawei NIU Lijun DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第3期297-306,共10页
Land use changes are known to alter soil organic carbon(SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microb... Land use changes are known to alter soil organic carbon(SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Mountains of Northeast China is meager. Soil carbon content, microbial biomass carbon(MBC), basal respiration and soil carbon mineralization were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest(NF); spruce plantation(SP) established following clear-cutting of NF; cropland(CL); ginseng farmland(GF) previously under NF; and a five-year Mongolian oak young forest(YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicating low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineralized carbon and potentially mineralized carbon(C0) in NF were significantly higher than those in CL and GF, while no significant difference was observed between NF and SP. In addition, YF had higher values of C0 and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land(CL and GF) uses and plantation may lead to a reduction in soil nutrients(SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area. 展开更多
关键词 土壤有机碳 土地利用变化 微生物量碳 长白山 东北 中国 土地利用类型 微生物特性
下载PDF
Spatio-Temporal Effect on Soil Respiration in Fine-Scale Patches in a Desert Ecosystem 被引量:5
7
作者 S. PEN-MOURATOV M. RAKHIMBAEV Y. STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2006年第1期1-9,共9页
在陆上的系统的土壤生物不均匀的在时空被散布,并且经常聚集了。在土壤环境的时间空间的补缀被认为为土壤生物多样性的维护关键,提供紧与资源划分交织的多样的微产地。“到帮助的一个规模单位”的决心理解生态的过程在最近的年里成为... 在陆上的系统的土壤生物不均匀的在时空被散布,并且经常聚集了。在土壤环境的时间空间的补缀被认为为土壤生物多样性的维护关键,提供紧与资源划分交织的多样的微产地。“到帮助的一个规模单位”的决心理解生态的过程在最近的年里成为了重要、很可争辩的问题之一。一个现场考古工作在一个荒芜的生态系统在北 Negev 荒芜的高地,在 biogeochemical 变量上决定好规模的风景补丁潮湿异质的影响的以色列和微生物引起的活动连接被执行。结果证明我们把有影响的性质归因于的土壤潮湿的时间空间的补缀,在土壤潮湿可获得性与减少被发现成为更多的异种遗传因子(从 8.2~0.4 g kg ? 1 )向热,干旱期,随着变异系数( CV )变化等于66.9%。有机物( OM )和全部的可溶的氮( TSN )的时间空间的分发被发现到一致地相对在整个湿季节(冬季和春天)被散布,随向干旱期的相对高的异质的增加(从0.25%~2.17%为 OM ,并且从 0~10.2 mg kg ? 1 为 TSN )与为 OM 和 TSN 的47.4%和99.7%的 CV 分别地。不同时间空间的风景模式为 Ca 被获得(CV =44.6%) , K (CV =34.4%) ,并且 Na (CV =92%) 在整个学习时期的离子。 CO2 进化( CV =48.6%)被发现具有更低的异质(在 2 和 39 g CO2-C g 之间变化? 1 干土 h ? 1 )在潮湿的季节,例如,冬季和春天,与Na+的异质和 TSN 和有机物的底层满足的高结合的呼吸的更低的价值,并且与在干旱期的更多的同质(在 1 和 50 g CO2-C g 之间变化? 1 干土 h ? 1 )。我们的结果阐明影响的荒芜的系统产地的异质和复杂性玷污生物区系活动。 展开更多
关键词 沙漠 生态系统 时空变化 土壤 呼吸作用
下载PDF
Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands 被引量:3
8
作者 XUQiu-Fang JIANGPei-Kun 《Pedosphere》 SCIE CAS CSCD 2005年第1期33-40,共8页
Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to unders... Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties. 展开更多
关键词 微生物 碳含量 功能差异 碳呼吸 土壤学
下载PDF
Toxicity of cadmium to soil microbial biomass and its activity:Effect of incubation time on Cd ecological dose in a paddy soil 被引量:1
9
作者 廖敏 罗运阔 +1 位作者 赵小敏 黄昌勇 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期324-330,共7页
Cadmium (Cd) is ubiquitous in the human environment and has toxic effect on soil microbial biomass or its activity, including microbial biomass carbon (Cmic), dehydrogenase activity (DHA) and basal respiration (BR), e... Cadmium (Cd) is ubiquitous in the human environment and has toxic effect on soil microbial biomass or its activity, including microbial biomass carbon (Cmic), dehydrogenase activity (DHA) and basal respiration (BR), etc., Cmic, DHA, BR were used as bioindicators of the toxic effect of Cd in soil. This study was conducted to determine the effects of Cd on soil microbial biomass and its activity in a paddy soil. The inhibition of microbial biomass and its activity by different Cd concentrations was described by the kinetic model (M1) and the sigmoid dose-response model (M2) in order to calculate three ecological doses of Cd: ED50, ED10 and ED5. Results showed that M2 was better fit than M1 for describing the ecological toxicity dose effect of cadmium on soil microbial biomass and its activity in a paddy soil. M2 for ED values (mg/kg soil) of Cmic, DHA, BR best fitted the measured paddy soil bioindicators. M2 showed that all ED values (mg/kg) increased in turn with increased incubation time. ED50, ED10 and ED5 of Cmic with M2 were increased in turn from 403.2, 141.1, 100.4 to 1000.7, 230.9, 144.8, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of DHA with M2 increased in turn from 67.6, 6.2, 1.5 to 101.1, 50.9, 41.0, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of BR with M2 increased in turn from 149.7, 6.5, 1.8 to 156.5, 50.8, 35.5, respectively, after 10 d to 60 d of incubation. So the ecological dose increased in turn with increased incubation time for M2 showed that toxicity of cadmium to soil microbial biomass and its activity was decreased with increased incubation time. 展开更多
关键词 毒性 土壤 微生物 生物活性 生态学 重金属污染
下载PDF
Soil Microbial Population in the Vicinity of the Bean Caper(Zygophyllum dumosum)Root Zone in a Desert System 被引量:1
10
作者 I.SHMUELI G.BARNESS Y.STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2007年第6期758-765,共8页
The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper(Zygophyllum dumosum)perennial desert shrub and ... The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper(Zygophyllum dumosum)perennial desert shrub and the inter-shrub sites.Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z.dumosum shrubs than from the inter-shrub sampling sites,with no differences between the two sampling layers(0-10 and 10-20 cm)throughout the study period.However,seasonal changes were observed due to autumn dew formation,which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient(qCO_2)revealed significant differences between the two sampling sites as well as between the two soil layers,elucidating the abiotic effect between the sites throughout the study period.The substrate availability index was found to significantly demonstrate the differences between the two sites,elucidating the significant contribution of Z.dumosum in food source availability and in moderating harsh abiotic components.The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment. 展开更多
关键词 沙漠 土壤 微生物种群 底部呼吸作用
下载PDF
Evaluation of Rhizobium tropici-Derived Extracellular Polymeric Substances on Selected Soil Properties, Seed Germination, and Growth of Black-Eyed Peas (Vigna unguiculata)
11
作者 Jonathan Alunge Metuge Erneste Havugimana +2 位作者 Jean Rugandirababisha Zachary N. Senwo Marie Chantal Mutimawurugo 《Agricultural Sciences》 2024年第5期548-564,共17页
Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility ... Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary. 展开更多
关键词 Rhizobium tropici Extracellular Polymeric Substances soil respiration soil microbial Biomass Black-Eyed Peas
下载PDF
A Comparative Study on the Microbiological Characteristics of Soils Under Different Land—Use Conditions from Karst Areas of Southwest China 被引量:3
12
作者 陈刚才 甘露 +2 位作者 王仕禄 吴沿友 万国江 《Chinese Journal Of Geochemistry》 EI CAS 2001年第1期52-58,共7页
Microbiological and physical\|chemical characteristics of subtropical forest, grassland and cropfield soils from the karst areas of Southwest China were investigated. The study revealed that the conversion of natural ... Microbiological and physical\|chemical characteristics of subtropical forest, grassland and cropfield soils from the karst areas of Southwest China were investigated. The study revealed that the conversion of natural forest to other forms of land would lead to a reduction in soil organic C(26.2%-35.3%), total N(37.2%-55.8%), total P(32.9%-43.6%), microbial biomass C(35.4%-49.1%), N(37.2%-55.8%), and P(25.8%-41.9%). Comparative analysis of microbial activity in terms of basal soil respiration showed maximum activity in forest soil and minimum in cropfield soil. Analysis of microbial metabolic respiratory activity indicated a relatively greater respiratory loss of CO\-2—C per unit microbial biomass in cropfield and grassland than in forest soil. Considering the importance of microbial components in soil, it is concluded that land use in different ways will lead to the reduction of biological stability of soil. 展开更多
关键词 土壤 微生物 中国西南地区 岩溶地区
下载PDF
Effects of Fertilization on Soil CO_(2) Efflux in Chinese Hickory(Carya cathayensis)Stands 被引量:1
13
作者 Juan Liu Meiqun Zheng Xueshuang Chen 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期271-283,共13页
Chinese hickory(Carya cathayensis Sarg.)is a popular nut tree in China,but there is little information about the influences of fertilization on soil CO_(2) efflux and soil microbial biomass.This study evaluated the sh... Chinese hickory(Carya cathayensis Sarg.)is a popular nut tree in China,but there is little information about the influences of fertilization on soil CO_(2) efflux and soil microbial biomass.This study evaluated the short-term effects of different fertilizer applications on soil CO_(2) efflux and soil microbial biomass in Chinese hickory stands.Four fertilizer treatments were established:control(CK,no fertilizer),inorganic fertilizer(IF),organic fertilizer(OF),and equal parts organic and inorganic N fertilizers(OIF).A field experiment was conducted to measure soil CO_(2) effluxes using closed chamber and gas chromatography techniques.Regardless of the fertilization practices,soil CO_(2) effluxes of all the treatments showed a similar temporal pattern,with the highest value in summer and the lowest in winter.The mean annual soil CO_(2) efflux in the IF treatment was significantly higher than that in the CK,OIF,and OF treatments.There was no significant difference in soil CO_(2) efflux between the OIF,OF,and CK treatments.Soil CO_(2) effluxes were significantly affected by soil temperature.Soil dissolved organic carbon(DOC)was positively correlated with soil CO_(2) efflux only in the CK treatment.Regression analysis,including soil temperature,moisture,and DOC,showed that soil temperature was the primary factor influencing soil CO_(2) effluxes.Both OF and OIF treatments increased concentrations of soil microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN),but decreased the ratio of MBC:MBN.These results reveal that applying organic fertilizer,either alone or combined with inorganic fertilizer,may be the optimal strategy for mitigating soil CO_(2) emission and improving soil quality in Chinese hickory stands. 展开更多
关键词 soil respiration microbial biomass FERTILIZATION
下载PDF
Effect of vegetation type, wetting intensity, and nitrogen supply on external carbon stimulated heterotrophic respiration and microbial biomass carbon in forest soils 被引量:6
14
作者 WU HaoHao XU XingKai +2 位作者 DUAN CunTao LI TuanSheng CHENG WeiGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第8期1446-1456,共11页
By using packed soil-core incubation experiments,we have studied stimulating effects of addition of external carbon(C)(glucose,6.4 g Cm^(-2))on heterotrophic respiration and microbial biomass C of a mature broadleaf a... By using packed soil-core incubation experiments,we have studied stimulating effects of addition of external carbon(C)(glucose,6.4 g Cm^(-2))on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest(BKPF)and an adjacent white birch forest(WBF)soil under different wetting intensities(55%and 80%WFPS,water-filled pore space)and nitrogen(N)supply(NH_4C1 and KNO_3,4.5 g Nm^(-2))conditions.The results showed that for the control,the cumulative carbon dioxide(CO_2)flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO_2-Cm^(-2),which was significantly larger than that from BKPF soil(2.86 to 3.36 g CO_2-Cm^(-2)).With increasing wetting intensity,the cumulative CO_2 flux from the control was decreased for the WBF soil,whereas an increase in the CO_2 flux was observed in the BKPF soil(P<0.05).The addition of NH_4C1 or KNO_3 alone significantly reduced the cumulative CO_2 fluxes by 9.2%-21.6%from the two soils,especially from WBF soil at low wetting intensity.The addition of glucose alone significantly increased soil heterotrophic respiration,microbial biomass C(MBC),and microbial metabolic quotient.The glucose-induced cumulative CO_2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO_2-Cm^(-2)and from 7.4 to 23.9 g Cm^(-2),which are larger than the dose of added C.Hence,the addition of external carbon can increase the decomposition of soil native organic C.The glucose-induced average and maximum rates of CO_2 fluxes during the incubation were significantly influenced by wetting intensity(WI)and vegetation type(VT),and by WI×VT,NH_4Cl×VT and WI×VT×NH_4Cl(P<0.05).The addition of NH_4C1,instead of KNO_3 significantly decreased the glucose-induced MBC of WBF soil(P<0.05),whereas adding NH_4C1 and KNO_3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture(P<0.05).According to the differences in soil labile C pools,MBC and CO_2 fluxes in the presence and absence of glucose,it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type,soil moisture,and amount and type of the N added. 展开更多
关键词 土壤异养呼吸 土壤湿润 微生物量碳 植被类型 外加碳源 湿强度 氮源 土壤微生物生物量碳
原文传递
Seasonality and moisture regime control soil respiration, enzyme activities, and soil microbial biomass carbon in a semi-arid forest of Delhi, India 被引量:1
15
作者 Urvashi Tomar Ratul Baishya 《Ecological Processes》 SCIE EI 2020年第1期579-591,共13页
Soil respiration,soil enzymes,and microbial biomass are important in carbon cycling in the terrestrial ecosystem which is generally limited by environmental factors and soil carbon availability.Hence,we tried to asses... Soil respiration,soil enzymes,and microbial biomass are important in carbon cycling in the terrestrial ecosystem which is generally limited by environmental factors and soil carbon availability.Hence,we tried to assess the factors affecting the functional aspects of these processes in a semi-arid climate.We monitored soil respiration(surface)using a portable infrared gas analyzer(Q-Box SR1LP Soil Respiration Package,Qubit Systems,Canada)equipped with a soil respiration chamber(Model:G 180).Soil respiration was measured at midday during each season throughout the study period.Soil enzymatic activities and microbial biomass carbon(MBC)were analyzed following the standard protocol for a year during peak time in four seasons at 0-10 cm and 10-20 cm depth.Soil respiration shows significant variation with highest in monsoon(3.31μmol CO2 m−2 s^(−1))and lowest in winter(0.57μmol CO2 m^(−2) s^(−1)).Similarly,β-glucosidase,dehydrogenase,and phenol oxidase activity ranged from 11.15 to 212.59μg PNP g^(−1) DW h^(−1),0.11 to 16.47μg TPF g^(−1) DW h^(−1),and 4102.95 to 10187.55μmol ABTS+g^(−1) DW min^(−1),respectively.MBC ranged from 17.08 to 484.5μgCg^(−1).Besides,soil respiration,soil enzymes(exceptβ-glucosidase),and MBC were significantly correlated with soil moisture.Seasonality,optimum moisture and temperature played a significant role in determining variations in soil microbiological processes(exceptβ-glucosidase activity);the carbon cycling in the study area is assisted by enzyme activity;dehydrogenase and phenol oxidase played a significant role in soil respiration;hence,this landscape is sensitive to environmental changes. 展开更多
关键词 soil respiration Enzyme activities microbial biomass carbon SEASONS Semi-arid forest
原文传递
Growing-season soil microbial respiration response to long-term no tillage and spring ridge tillage
16
作者 Gang Wang Honglei Jia +3 位作者 Jian Zhuang Stephan Glatzel John McLBennett Yingcan Zhu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第4期143-150,共8页
No tillage(NT)and spring ridge tillage(SRT)are two common applications of conservation tillage.Although conservation tillage is known to exert major control over soil microbial respiration(SMR),the growing-season SMR ... No tillage(NT)and spring ridge tillage(SRT)are two common applications of conservation tillage.Although conservation tillage is known to exert major control over soil microbial respiration(SMR),the growing-season SMR response to these two applications remains elusive.In order to better understand the influence of conservation tillage practices,this experiment was conducted in an experimental field using NT and SRT for 17 years.In situ measurements of SMR,soil temperature and soil water content(SWC)were performed.Soil samples were collected to analyze soil porosity,soil microbial biomass(SMB)and soil enzymatic activities.Results show that the two conservation tillage systems had a significant difference(p<0.05)in terms of SMR;the SMR of NT was 14.7 mg∙C/m^(2)∙h higher than that of SRT.In terms of soil temperature and soil enzymatic activities,the two treatments were not significantly different(p>0.05).Despite SRT increasing the proportion of micro-porosities and meso-porosities,the soil macro-porosities for NT were 7.37%higher than that of SRT,which resulted in higher bacteria and fungi in NT.Owing to SRT damaged the hypha,which had disadvantage in soil microbe protection.Inversely,less soil disturbance was a unique advantage in NT,which was in favor of improving soil macro-pores and SWC.Redundancy analyses(RDA)showed SMR was positively correlated with soil macro-pores,SMB and SWC.Furthermore,the Pearson correlation test indicated that SMB and soil enzymatic activities did not have a significant correlation(p>0.05).This study results suggest that SRT is more conducive to carbon sequestration compared with NT in cropland. 展开更多
关键词 no tillage spring ridge tillage soil microbial respiration microbial biomass soil porosity soil enzymatic activity
原文传递
水肥添加对草田轮作系统土壤呼吸速率的影响
17
作者 巩泽琳 额尔德木图 +4 位作者 苏小港 成蓉蓉 杨鹤明 张晓琳 翟鹏辉 《草地学报》 CAS CSCD 北大核心 2024年第2期562-569,共8页
土壤呼吸是生态系统碳排放最重要的途径,其微小变化将对陆地生态系统碳循环产生深远的影响。为探究不同管理方式对草田轮作系统土壤碳排放的影响,本研究开展水肥添加控制试验,动态监测紫花苜蓿(Medicago sativa L.)-冬小麦(Triticum aes... 土壤呼吸是生态系统碳排放最重要的途径,其微小变化将对陆地生态系统碳循环产生深远的影响。为探究不同管理方式对草田轮作系统土壤碳排放的影响,本研究开展水肥添加控制试验,动态监测紫花苜蓿(Medicago sativa L.)-冬小麦(Triticum aestivum L.)草田轮作系统中冬小麦阶段的土壤呼吸速率、土壤微生物生物量碳/氮含量、土壤温度和土壤含水量等指标。结果显示水分添加使土壤呼吸速率提高28.5%(P<0.05),但肥料添加对其影响不显著。水分添加使土壤含水量提高24.7%,但使土壤温度降低9.7%;肥料添加使土壤温度降低11.0%,使0~10 cm, 10~20 cm土层土壤微生物生物量氮含量提高336%,131%。本研究说明水肥添加通过影响土壤温度、土壤含水量等土壤质量指标,影响植物根系生长发育和微生物活性,最终影响草田轮作系统土壤碳排放。 展开更多
关键词 紫花苜蓿-冬小麦 微生物生物量碳/氮含量 土壤呼吸速率 水肥添加
下载PDF
Root exclusion methods for partitioning of soil respiration:Review and methodological considerations
18
作者 Mei-Yee CHIN Sharon Yu Ling LAU +4 位作者 Frazer MIDOT Mui Sie JEE Mei Lieng LO Faustina E.SANGOK Lulie MELLING 《Pedosphere》 SCIE CAS CSCD 2023年第5期683-699,共17页
Soil respiration is a vital process in all terrestrial ecosystems,through which the soil releases carbon dioxide(CO_(2))into the atmosphere at an estimated annual rate of 68–101 Pg carbon,making it the second highest... Soil respiration is a vital process in all terrestrial ecosystems,through which the soil releases carbon dioxide(CO_(2))into the atmosphere at an estimated annual rate of 68–101 Pg carbon,making it the second highest terrestrial contributor to carbon fluxes.Since soil respiration consists of autotrophic and heterotrophic constituents,methods for accurately determining the contribution of each constituent to the total soil respiration are critical for understanding their differential responses to environmental factors and aiding the reduction of CO_(2)emissions.Owing to its low cost and simplicity,the root exclusion(RE)technique,combined with manual chamber measurements,is frequently used in field studies of soil respiration partitioning.Nevertheless,RE treatments alter the soil environment,leading to potential bias in respiration measurements.This review aims to elucidate the current understanding of RE,i.e.,trenching(Tr)and deep collar(DC)insertion techniques,by examining soil respiration partitioning studies performed in several ecosystems.Additionally,we discuss methodological considerations when using RE and the combinations of RE with stable isotopic and modeling approaches.Finally,future research directions for improving the Tr and DC insertion methods in RE are suggested. 展开更多
关键词 autotrophic respiration deep collar insertion heterotrophic respiration microbial respiration root trenching soil microbial community soil respirationcomponent
原文传递
Erosion effects on soil microbial carbon use efficiency in the mollisol cropland in northeast China
19
作者 Xuebing Zhang Guangting Pei +3 位作者 Tianyu Zhang Xianlei Fan Ziping Liu Edith Bai 《Soil Ecology Letters》 CSCD 2023年第4期51-63,共13页
●Soil erosion decreased soil microbial CUE and increased microbial uptake of carbon.●Soil erosion decreased microbial CUE by decreasing substrate C,N and MBC and increasing soil pH.●Soil microbes had to increase th... ●Soil erosion decreased soil microbial CUE and increased microbial uptake of carbon.●Soil erosion decreased microbial CUE by decreasing substrate C,N and MBC and increasing soil pH.●Soil microbes had to increase their uptake rate to cope with the loss of substrates with increasing erosion rate.●Soil microbial respiration increased with increasing degree of erosion.●Soil microbial growth rate remained relative stable under different degrees of soil erosion.●Microbial CUE in soil surface was less responsive to erosion than that in deeper soil.Soil microbial carbon use efficiency(CUE)is an important synthetic parameter of microbial community metabolism and is commonly used to quantify the partitioning of carbon(C)between microbial growth and respiration.However,it remains unclear how microbial CUE responds to different degrees of soil erosion in mollisol cropland.Therefore,we investigated the responses of soil erosion on microbial CUE,growth and respiration to different soil erosion rates in a mollisol cropland in northeast China based on a substrate independent method(18O-H2O labeling).Soils were sampled at four positions along a down-slope transect:summit,shoulder,back and foot.We found microbial CUE decreased significantly with increasing soil erosion rate in 5−20 cm soil,but did not change in 0−5 cm.The decrease of microbial CUE in subsoil was because microbes increased C uptake and allocated higher uptake C to microbial basal respiration with increasing soil erosion rate.Microbial respiration increased significantly with soil erosion rate,probably due to the more disturbance and unbalanced stoichiometry.Furthermore,soil microbes in surface soil were able to maintain their growth rates with increasing degree of erosion.Altogether,our results indicated that soil erosion could decrease microbial CUE by affecting soil physical and chemical properties,resulting in more decomposition of soil organic matter and more soil respiration,which had negative feedbacks to soil C sequestration and climate changes in cropland soil. 展开更多
关键词 soil organic carbon soil erosion microbial carbon use efficiency growth rate respiration
原文传递
Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields 被引量:7
20
作者 LUO Jun-yu ZHANG Shuai +5 位作者 ZHU Xiang-zhen LU Li-min WANG Chun-yi LI Chun-hua CUI Jin-jie ZHOU Zhi-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1624-1633,共10页
With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere ... With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere microbes and Bt protein residues. In 2013 and 2014, investigations were conducted on the rhizosphere microbial biomass, soil enzyme activities and Bt protein contents of the soil under transgenic Bt cotton (variety GK19) and its parental non-transgenic cotton (Simian 3) cultivated at various salinity levels (1.15, 6.00 and 11.46 dS m-1). Under soil salinity stress, trace amounts of Bt proteins were ob- served in the Bt cotton GK19 rhizosphere soil, although the protein content increased with cotton growth and increased soil salinity levels. The populations of slight halophilic bacteria, phosphate solubilizing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria decreased with increased soil salinity in the Bt and non-Bt cotton rhizosphere soil, and the microbial biomass carbon, microbial respiration and soil catalase, urease and alkaline phosphatase activity also decreased. Correlation analyses showed that the increased Bt protein content in the Bt cotton rhizosphere soil may have been caused by the slower decomposition of soil microorganisms, which suggests that salinity was the main factor influencing the relevant activities of the soil microorganisms and indicates that Bt proteins had no clear adverse effects on the soil microorganisms. The results of this study may provide a theoretical basis for risk assessments of genetically modified cotton in saline alkaline soil. 展开更多
关键词 soil salinity Bt cotton soil microorganisms microbial biomass carbon microbial respiration soil enzyme activityBt protein
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部