期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of long-term fertilization on soil nitrate distribution 被引量:3
1
作者 GUO Li ping ZHANG Fu suo +2 位作者 WANG Xing ren MAO Da ru CHEN Xin ping 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第1期58-63,共6页
A thirteen years long-term field fertilizer experiment was conducted to monitor the effect of different fertilization on soil nitrate distribution. The results showed: (1) Applying relative excessive N fertilizer coul... A thirteen years long-term field fertilizer experiment was conducted to monitor the effect of different fertilization on soil nitrate distribution. The results showed: (1) Applying relative excessive N fertilizer could result large quantities of NO3- residue and NO3- movement downward in soil profiles; amending phosphate fertilizer or organic manure with nitrogen fertilizer together could significantly improve the status of NO3- leaching downward due to the balanced uptake of nutrients by crops. ( 2) Appropriate amounts of nitrogen fertilizer which was equal or smaller than the optimal fertilization rate could not result in more NO3- leaching in Northern China. (3) Precipitation influenced the amounts and depth of soil NO3- leaching: NO3- could move to 80 cm depth or below at autumn or at the next spring when rainfall was higher during the rainy season through July to September in North China. 展开更多
关键词 FERTILIZATION soil nitrate nitrate leaching long-term experiment nitrogen apparent recovery
下载PDF
Effects of soil nitrate:ammonium ratio on plant carbon:nitrogen ratio and growth rate of Artemisia sphaerocephala seedlings 被引量:1
2
作者 Rong Li XingDong He +4 位作者 PingPing Xue HuaCong Ci Wei Wu YuBao Gao HaLin Zhao 《Research in Cold and Arid Regions》 2010年第5期445-454,共10页
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question... Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant. 展开更多
关键词 soil nitrate ammonium ratio plant carbon: nitrogen ratio growth rate nitrogen limitation plant community succession
下载PDF
Moving Dynamics of Nitrate Nitrogen in Soil of Maize Field on Meadow Soil of Daling River Valley in Liaoning and Its Fertilization Controlling
3
作者 刘慧颖 董环 +1 位作者 张鑫 韩晓日 《Agricultural Science & Technology》 CAS 2010年第9期121-125,共5页
The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of diff... The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of different kinds of N application methods.The results showed that the content of NO3-N in soil was increased with the amount of nitrogen fertilizer;At the same amount of nitrogen fertilizer,the content of NO3-N in soil showed a trend of chemical fertilizerstraw treatmentslow controlled release fertilizer.Based on the requirement of roots in different growth stages to nutrition,the migration directions of NO3-N could be regulated by each layer of soil.In the early growth stage,the NO3-N would move upward,while it moved downward in the late growth stage.Straw returning treatment could improve the keeping ability of soil to NO3-N and avoid the downward migration of NO3-N,as well as reduce the damage of groundwater pollution.The use of slow controlled release fertilizer had achieved the continuing releasing of nutrition.Moreover,the peak of nutrition releasing had been delayed for 30 d,which had met the requirement of nutrient supply in maturing stage.The yield of slow controlled release fertilizer treatment was the highest with the least accumulation of NO3-N and less negative influence on environment.The yield of straw returning treatment and chemical fertilizer treatment was closed to each other. 展开更多
关键词 Meadow soil soil nitrate nitrogen Rational fertilization Daling River valley
下载PDF
The characterization of soil profile distribution for nitrate leached in the paddy soil
4
作者 WANG Shengjia, WANG Jiayu, and CHEN Yi, Inst of Soil and Fertilizer, Zhejiang Acad of Agri Sci, Hangzhou 310021, China 《Chinese Rice Research Newsletter》 1998年第1期8-9,共2页
Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil wa... Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil was flood-ed with penetration rate controlled at approxi-mate 3 mm per day in duration of double-riceseason and laid fallow and natural in winterand spring.Results showed that nitrate was the mainform of nitrogen in percolates.The change of 展开更多
关键词 The characterization of soil profile distribution for nitrate leached in the paddy soil
下载PDF
Effect of N Fertilization on Grain Yield of Winter Wheat and Apparent N Losses 被引量:45
5
作者 CUI Zhen-Ling CHEN Xin-Ping +3 位作者 LI Jun-Liang XU Jiu-Fei SHI Li-Wei ZHANG Fu-Suo 《Pedosphere》 SCIE CAS CSCD 2006年第6期806-812,共7页
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper... Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields. 展开更多
关键词 apparent N losses optimum N rate residual soil nitrate N soil mineral N winter wheat yield
下载PDF
Effects of irrigation regimes on soil NO_(3)^(-)-N, electrical conductivity and crop yield in plastic greenhouse 被引量:6
6
作者 Tingting Chang Yujie Zhang +5 位作者 Zhanyu Zhang Xiaohou Shao Weina Wang Jie Zhang Xu Yang Huilian Xu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期109-115,共7页
Developing water-saving irrigation regimes has important practical significance not only in alleviating the crucial water shortage,but also in controlling soil salinization for the protected cultivation in eastern Chi... Developing water-saving irrigation regimes has important practical significance not only in alleviating the crucial water shortage,but also in controlling soil salinization for the protected cultivation in eastern China.A field study with six treatments was conducted to evaluate the effects of different irrigation regimes with subdrainage systems on the soil nitrate nitrogen,salinity and moisture,also evaluate the effects on tomato growth,fruit yield and irrigation water use efficiency(IWUE).The treatments were distinguished by three different irrigation amounts of 310 mm,360 mm and 410 mm,and two irrigation frequencies of 7 and 11 times.Results showed that the irrigation amount had significant effects on the soil NO_(3)^(-)-N and electric conductivity(EC).A positive correlation was detected between soil NO_(3)^(-)-N(x)and EC(y)at 0-20 m depth after harvest,with a linear equation of y=0.063x-0.670.Soil volumetric moisture at 0.10 m and 0.20 m depth was increased as the irrigation amount increased.Moreover,a higher amount of irrigation increased the fruit yield but reduced the IWUE of tomato.It was also found that smaller irrigation amounts combined with frequent intervals could increase fruit yield and IWUE.However,the fruit quality of tomato had a significant(p<0.05)negative correlation with irrigation amount.Therefore,the parameters of irrigation regime including the irrigation amount and intervals should be considered comprehensively in order to find a compromise between salinity control and irrigation water use efficiency improvement. 展开更多
关键词 irrigation regimes GREENHOUSE TOMATO soil nitrate nitrogen soil electric conductivity soil salinity water use efficiency
原文传递
Effect of invasion by Hyptis suaveolens on plant diversity and selected soil properties of a constructed tropical grassland
7
作者 Talat Afreen Pratap Srivastava +1 位作者 Hema Singh Jamuna Sharan Singh 《Journal of Plant Ecology》 SCIE CSCD 2018年第5期751-760,共10页
Aims Hyptis suaveolens(L.)Poit is an important invader of the tropical and sub-tropical regions of the world.In our study,it has been inves-tigated that how does the H.suaveolens invasion regulate plant spe-cies diver... Aims Hyptis suaveolens(L.)Poit is an important invader of the tropical and sub-tropical regions of the world.In our study,it has been inves-tigated that how does the H.suaveolens invasion regulate plant spe-cies diversity across the seasons in the dry tropical grassland.We hypothesized that a shift in soil inorganic-N availability is caused by invasion,and this shift is integral to access the invasion effect on plant diversity.Methods The study was performed in experimental plots at the Botanical Garden of the Banaras Hindu University(25°16′3.3″N and 82°59′22.7″E),Varanasi,Uttar Pradesh,India.Five replicates(each,2×2m)of non-invaded grassland plots(NIG)and five grassland plots invaded with H.suaveolens(IG)were established.These plots were constructed by transplanting indigenous grassland patches from an adjacent native grassland.In the invaded plots,20 indi-viduals of H.suaveolens were transplanted per plot.After 1 year of establishment,diversity attributes and soil properties were recorded from these plots in three seasons as per standard protocol.Important Findings The results indicated that Hyptis invasion negatively affects plant diversity,with relatively higher impact in rainy season as compared to the winter season.IG exhibited lower soil mois-ture content and temperature than NIG in rainy season,whereas soil ammonium-N,nitrate-N,total inorganic-N,N mineralization registered higher values for IG than NIG in both rainy and win-ter season.Diversity indices were negatively correlated with soil inorganic-N pool and N mineralization.However,these indices were positively correlated with microbial biomass carbon(MBC),and the correlation coefficient for this relationship was higher for rainy season as compared to winter.Species richness(r=0.65)and Shannon diversity(r=0.757)were significantly correlated with the ratio of ammonium-N to nitrate-N.The negative effect of invasion by H.suaveolens on the plant diversity is possibly mediated by the effect of invasion on N mineralization processes(mainly nitrification)and the availability of soil inorganic-N pools.The study indicates that Hyptis invasion has an enormous poten-tial to change the structure and composition of plant communities in the dry tropical grasslands. 展开更多
关键词 dry tropical grassland diversity Hyptis suaveolens MINERALIZATION soil ammonium to nitrate ratio
原文传递
Dissolved Organic Nitrogen in Mediterranean Ecosystems 被引量:1
8
作者 M.DELGADO-BAQUERIZO F.COVELO A.GALLARDO 《Pedosphere》 SCIE CAS CSCD 2011年第3期309-318,共10页
Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence... Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence in Mediterranean ecosystems remains unclear. The aims of this study were to i) estimate soil DON in a wide set of Mediterranean ecosystems and compare this levels with those for other ecosystems; ii) describe temporal changes in DON and dissolved inorganic nitrogen (DIN) forms (NH+ and NO3), and characterize spatial heterogeneity within plant communities; and iii) study the relative proportion of soil DON and DIN forms as a test of Schimel and Bennett's hypothesis that the prevalence of different N forms follows a gradient of nutrient availability. The study was carried out in eleven plant communities chosen to represent a wide spectrum of Mediterranean vegetation types, ranging from early to late successional status. DON concentrations in the studied Mediterranean plant communities (0-18.2 mg N kg-1) were consistently lower than those found in the literature for other ecosystems. We found high temporal and spatial variability in soil DON for all plant communities. As predicted by the Schimel and Bennett model for nutrient-poor ecosystems, DON dominance over ammonium and nitrate was observed for most plant communities in winter and spring soil samples. However, mineral-N dominated over DON in summer and autumn. Thus, soil water content may have an important effect on DON versus mineral N dominance in Mediterranean ecosystems 展开更多
关键词 dissolved inorganic nitrogen nitrogen cycle soil ammonium soil N availability soil nitrate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部