期刊文献+
共找到10,306篇文章
< 1 2 250 >
每页显示 20 50 100
Tracing nitrate sources in one of the world's largest eutrophicated bays(Hangzhou Bay):insights from nitrogen and oxygen isotopes
1
作者 Zhi Yang Jianfang Chen +6 位作者 Haiyan Jin Hongliang Li Zhongqiang Ji Yangjie Li Bin Wang Zhenyi Cao Qianna Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期86-95,共10页
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi... Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019. 展开更多
关键词 nitrogen isotopes oxygen isotopes nitrogen cycle nitrate sources Hangzhou Bay
下载PDF
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport
2
作者 HU Yunchao YAN Tiancai +13 位作者 GAO Zhenyu WANG Tiankang LU Xueli YANG Long SHEN Lan ZHANG Qiang HU Jiang REN Deyong ZHANG Guangheng ZHU Li LI Li ZENG Dali QIAN Qian LI Qing 《Rice science》 SCIE CSCD 2024年第5期587-602,I0062-I0064,共19页
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle... Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production. 展开更多
关键词 Oryza sativa CADMIUM nitrogen ammonium nitrate ammonium chloride
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
3
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE nitrate transporter nitrogen utilization efficiency
下载PDF
Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe,China
4
作者 YE He HONG Mei +4 位作者 XU Xuehui LIANG Zhiwei JIANG Na TU Nare WU Zhendan 《Journal of Arid Land》 SCIE CSCD 2024年第3期447-459,共13页
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio... Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe. 展开更多
关键词 soil microorganisms plant-microbial community interaction plant diversity nitrogen deposition desert steppe
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis 被引量:2
5
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 GROUNDWATER nitrate soil Spatial-temporal variation Geostatistical analysis
下载PDF
Effects of Slow-release Nitrogen Fertilizer on Yield and Nitrogen Accumulation of Summer Maize in Shajiang Black Soil Area
6
作者 Yongfeng XING Changmin WEI +7 位作者 Guoli CHEN Weimeng XU Wanyou SONG Guizhi LI Wenwei ZHOU Yanwei WAN Enzhong ZHOU Weifang LI 《Agricultural Biotechnology》 2024年第2期72-74,共3页
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap... [Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area. 展开更多
关键词 Slow-release nitrogen fertilizer Shajiang black soil Summer maize nitrogen metabolism YIELD
下载PDF
Impact of Different Rates of Nitrogen Supplementation on Soil PhysicochemicalProperties and Microbial Diversity in Goji Berry
7
作者 Xiaojie Liang Wei An +4 位作者 Yuekun Li Yajun Wang Xiaoya Qin Yanhong Cui Shuchai Su 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期467-486,共20页
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz... Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions. 展开更多
关键词 Goji berry production Ningxia China differential nitrogen supplementation rates 16S RNA gene and IT1&IT2 region sequencing soil physicochemical properties
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
8
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 nitrogen Maize/Soybean FERTILIZATION INTERCROPPING soil FIXATION
下载PDF
Nitrogen recovery and nitrate leaching of controlled release nitrogen fertilizer in irrigated paddy soil 被引量:3
9
作者 郑圣先 聂军 +1 位作者 戴平安 郑颖俊 《Agricultural Science & Technology》 CAS 2004年第3期2-10,共9页
Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRN... Ordinary high nitrogen fertilizer often results in nitrate (NO3--N) leaching and low recovery. Microplot and field plot experiments were conducted to determine the effect of controlled release nitrogen fertilizer (CRNF) on reco very and nitrate leaching on paddy soils. During two early rice cropping seasons (2002 and 2003), a single basal application of CRNF at 90 kg N ha-1 increased grain yields by 7.7%to 11.6%compared with two applications of urea. Estimated by the difference method fertilizer N recovery of CRNF (mean 76.3%) was 38.9 pe rcentage point higher than that of urea (mean 37.4%); estimated by 15N isotope method (mean 49.6%) CRNF (mean 67.1%) was 35.9 percentage point higher than ur ea (mean 31.2%). NO3--N leaching losses were 9.19 and 6.70 kg ha-1 for urea and CRNF, respectively. NO3--N leaching during the early rice cropping season was 27.1 %lower from CRNF than from two applications of urea. These losses repr esent 10.2%and 7.4%of applied urea-N and CRNF-N. Results from this study ind icate that CRNF improves N recovery and reduces NO3--N leaching and increases rice yield. 展开更多
关键词 controlled release nitrogen fertilizer nitrogen recovery nitrate leaching rice yield
下载PDF
Moving Dynamics of Nitrate Nitrogen in Soil of Maize Field on Meadow Soil of Daling River Valley in Liaoning and Its Fertilization Controlling
10
作者 刘慧颖 董环 +1 位作者 张鑫 韩晓日 《Agricultural Science & Technology》 CAS 2010年第9期121-125,共5页
The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of diff... The moving dynamics of nitrate nitrogen(NO3-N)in soil of maize field on meadow soil of Daling river valley in Liaoning and its rational fertilization controlling were discussed in this study by the designing of different kinds of N application methods.The results showed that the content of NO3-N in soil was increased with the amount of nitrogen fertilizer;At the same amount of nitrogen fertilizer,the content of NO3-N in soil showed a trend of chemical fertilizerstraw treatmentslow controlled release fertilizer.Based on the requirement of roots in different growth stages to nutrition,the migration directions of NO3-N could be regulated by each layer of soil.In the early growth stage,the NO3-N would move upward,while it moved downward in the late growth stage.Straw returning treatment could improve the keeping ability of soil to NO3-N and avoid the downward migration of NO3-N,as well as reduce the damage of groundwater pollution.The use of slow controlled release fertilizer had achieved the continuing releasing of nutrition.Moreover,the peak of nutrition releasing had been delayed for 30 d,which had met the requirement of nutrient supply in maturing stage.The yield of slow controlled release fertilizer treatment was the highest with the least accumulation of NO3-N and less negative influence on environment.The yield of straw returning treatment and chemical fertilizer treatment was closed to each other. 展开更多
关键词 Meadow soil soil nitrate nitrogen Rational fertilization Daling River valley
下载PDF
Effects of Soil Nitrate Nitrogen Residues and Leaching for Different Kinds of Slow-release Nitrogen Fertilizers in Tall-fescue Soil
11
作者 谷佳林 方瑞元 +4 位作者 徐凯 张东雷 张宜霞 刘善江 张玉铎 《Agricultural Science & Technology》 CAS 2013年第7期1017-1020,共4页
ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment fr... ObjectiveThe aim was to explore the movement of nitrate nitrogen in tall-fescue soils by different kinds of slow release nitrogen fertilizers. MethodBased on infiltration-tanks and test plots, a new and environment friendly fertilizer was explored. ResultThe results show that compared with urea treatment, slow-release nitrogen fertilizer treatments could reduce nitrate nitrogen content and leaching amount in soils. Compared with PCU30 and IU treatments, the PCU60 treatment became more efficient in reducing nitrate content and leaching amount in 0-90 cm soil layer. ConclusionIn summary, slow-release nitrogen fertilizer, which can reduce soil nitrate content and leaching losses, is a kind of novel fertilizer with high environmental benefit and promising application. 展开更多
关键词 Slow-release nitrogen fertilizers Tall fescue Residues of nitrate nitrogen LEACHING
下载PDF
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:3
12
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
Effects of long-term grazing exclusion on vegetation structure,soil water holding capacity,carbon and nitrogen sequestration capacity in an alpine meadow on the Tibetan Plateau 被引量:2
13
作者 YANG Yong-sheng ZHANG Fa-wei +5 位作者 XIE Xian-rong WANG Jun-bang LI Ying-nian HUANG Xiao-tao LI Hui-ting ZHOU Hua-kun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期779-791,共13页
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d... Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion. 展开更多
关键词 Long-term grazing exclusion soil water holdingcapacity soilcarbonand nitrogen sequestration BIOMASS Alpine meadow
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:1
14
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe
15
作者 MA Jinpeng PANG Danbo +4 位作者 HE Wenqiang ZHANG Yaqi WU Mengyao LI Xuebin CHEN Lin 《Journal of Arid Land》 SCIE CSCD 2023年第9期1084-1106,共23页
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef... Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies. 展开更多
关键词 soil respiration litter respiration nitrogen deposition soil carbon soil microorganisms climate change desert steppe ecosystems
下载PDF
Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.
16
作者 SUN Mengjie GUO Shiwen +1 位作者 XIONG Chunlian LI Pinfang 《Journal of Arid Land》 SCIE CSCD 2023年第2期218-230,共13页
Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush ... Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush herb with high resistance of Pb and wide adaptability,was used in pot experiments to study the effects of exogenous nitrate N(NO_(3)^(–)-N)on the absorption and transportation of Pb and plant growth under different Pb concentrations.Then,the mechanism of NO_(3)^(-)-N affecting Pb and nutrient uptake and transport was explored.The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg,and the added concentration of NO_(3)^(-)-N was 0.0–0.3 g/kg.The results showed that I.lactea was highly tolerant to Pb,and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction.This protective function became more pronounced under the condition of raised Pb concentration in the soil.When the concentration of Pb in the soil reached 800 mg/kg,the highest Pb content of I.lactea was found under the condition of 0.1 g/kg of NO–3-N addition.When Pb concentration in the soil increased to 1600 mg/kg,the increase in NO_(3)^(-)-N addition promoted Pb uptake by the root.To ensure the well growth of I.lactea and the effect of remediation of Pb-contaminated soil,the recommended concentration of NO–3-N in the soil is 0.1 g/kg.This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil. 展开更多
关键词 Iris lactea nitrate nitrogen plant nutrient lead accumulation ABSORB transport
下载PDF
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
17
作者 KOU Zhaoyang LI Chunyue +5 位作者 CHANG Shun MIAO Yu ZHANG Wenting LI Qianxue DANG Tinghui WANG Yi 《Journal of Arid Land》 SCIE CSCD 2023年第8期960-974,共15页
Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel... Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas. 展开更多
关键词 nitrogen and phosphorus additions microbial community structure farmland ecosystem nitrogen mineralization soil enzyme activity
下载PDF
Soil water content and nitrogen differentially correlate with multidimensional leaf traits of two temperate broadleaf species
18
作者 Ming-Yue Jin Daniel J.Johnson +2 位作者 Guang-Ze Jin Qing-Xi Guo Zhi-Li Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第6期694-701,共8页
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ... The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes. 展开更多
关键词 Leaf trait multidimensionality Economics traits Vein traits soil water content soil total nitrogen Shade tolerance
下载PDF
Monitoring Soil Nitrate Nitrogen Based on Hyperspectral Data in the Apple Orchards 被引量:2
19
作者 Yu Wei Xicun Zhu +4 位作者 Cheng Li Lizhen Cheng Ling Wang Gengxing Zhao Yuanmao Jiang 《Agricultural Sciences》 2017年第1期21-32,共12页
This paper is aimed to monitor the soil nitrate nitrogen content in the apple orchards rapidly, accurately and in real time by making full use of the effective information of soil spectra. The 96 air-dried soil sample... This paper is aimed to monitor the soil nitrate nitrogen content in the apple orchards rapidly, accurately and in real time by making full use of the effective information of soil spectra. The 96 air-dried soil samples of the apple orchards in Qixia county, Yantai city, Shandong province were used as the data source. Spectral measurements of soil samples were carried out by ASD Fieldspec 3 in the darkroom, and the content of the soil nitrate nitrogen was determined by chemical method. Then the hyperspectral reflectance of soil samples were preprocessed by Multivariate Scatter Correction (MSC) and First Derivative (FD), the correlation analysis was carried out with the soil nitrate nitrogen content. The sensitive wavelength of soil nitrate nitrogen was screened. Finally, the Support Vector Machine (SVM) model for the soil nitrate nitrogen content was established. The results showed that the selected sensitive wavelength were 617 nm, 760 nm, 1239 nm, 1442 nm, 1535 nm, 1695 nm, 1776 nm, 1907 nm and 2088 nm. Hyperspectral monitoring model was established by SVM, in which the prediction set R2 was 0.959, RMSE was 0.281, RPD was 3.835;the correction set R2 was 0.822, RMSE was 0.392, RPD was 2.037. The SVM model could be used to monitor the soil nitrate content accurately. 展开更多
关键词 Hyperspectrum nitrate nitrogen CONTENT Support VECTOR Machine SENSITIVE WAVELENGTH
下载PDF
The Effects of Water and Fertilizer Coupling on Plant and Soil Nitrogen Characteristics and Fruit Growth of Rabbiteye Blueberry Plants in a Semi-Arid Region in China
20
作者 Xiaolan Guo Di Zhao +3 位作者 Jinbin Hu Delu Wang Jianbin Wang Muhammad Shakeel 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期209-223,共15页
To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two facto... To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two factors(water and fertilizer application)with four levels of irrigation and three levels of fertilization,and a control.Under the different water and fertilizer combinations,N primarily accumulated in the leaves.Irrigation and N application within appropriate ranges(pure N≤29 g/plant and irrigation volume≤2.5 L/plant)significantly improved the blueberry fruit yield.Increases in water and N within these ranges promoted the effective accumulation of N in various organs and the absorption and utilization of N in the plants,which ultimately promoted blueberry yield.With increased N application rate,the nitrate N content of the 0–20 cm and 20–50 cm soil layers increased.With increased irrigation volume,the nitrate N content of the 0–20 cm soil layer decreased,while the nitrate content in the 20–50 cm soil layer increased.Low N and moderate water treatments resulted in high fruit yields and reduced nitrate N retention in the soil.Under these conditions,the economic input-output ratio was high and the soil N accumulation was low,and thus the economic and ecological benefits were maximized. 展开更多
关键词 Vaccinium virgatum soil nitrogen distribution plant nitrogen utilization fruit yield
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部