期刊文献+
共找到278,630篇文章
< 1 2 250 >
每页显示 20 50 100
Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe,China
1
作者 YE He HONG Mei +4 位作者 XU Xuehui LIANG Zhiwei JIANG Na TU Nare WU Zhendan 《Journal of Arid Land》 SCIE CSCD 2024年第3期447-459,共13页
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio... Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe. 展开更多
关键词 soil microorganisms plant-microbial community interaction plant diversity nitrogen deposition desert steppe
下载PDF
Effects of Slow-release Nitrogen Fertilizer on Yield and Nitrogen Accumulation of Summer Maize in Shajiang Black Soil Area
2
作者 Yongfeng XING Changmin WEI +7 位作者 Guoli CHEN Weimeng XU Wanyou SONG Guizhi LI Wenwei ZHOU Yanwei WAN Enzhong ZHOU Weifang LI 《Agricultural Biotechnology》 2024年第2期72-74,共3页
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap... [Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area. 展开更多
关键词 Slow-release nitrogen fertilizer Shajiang black soil Summer maize nitrogen metabolism YIELD
下载PDF
Impact of Different Rates of Nitrogen Supplementation on Soil PhysicochemicalProperties and Microbial Diversity in Goji Berry
3
作者 Xiaojie Liang Wei An +4 位作者 Yuekun Li Yajun Wang Xiaoya Qin Yanhong Cui Shuchai Su 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期467-486,共20页
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz... Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions. 展开更多
关键词 Goji berry production Ningxia China differential nitrogen supplementation rates 16S RNA gene and IT1&IT2 region sequencing soil physicochemical properties
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
4
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 nitrogen Maize/Soybean FERTILIZATION INTERCROPPING soil FIXATION
下载PDF
The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought,High Temperature,and Nitrogen and Phosphorus Deficits
5
作者 Yong Qin Xiaoyu Li +3 位作者 Yanhong Wu Hai Wang Guiqi Han Zhuyun Yan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期119-135,共17页
Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic ... Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil. 展开更多
关键词 Abiotic stress Salvia miltiorrhiza soil enzymes total polysaccharides soil carbon sequestration
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
6
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 soil-microorganisms-plant system CARBON nitrogen PHOSPHORUS tea quality path analysis
下载PDF
Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China
7
作者 Xinlei Fu Yunze Dai +3 位作者 Jun Cui Pengfei Deng Wei Fan Xiaoniu Xu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期95-108,共14页
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no... Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition. 展开更多
关键词 Long-term nitrogen addition Old-growth subtropical forest METAGENOMICS Beneficial microorganisms Co-occurrence network
下载PDF
Refining the Factors Affecting N_(2)O Emissions from Upland Soils with and without Nitrogen Fertilizer Application at a Global Scale
8
作者 Wenqian JIANG Siqi LI +5 位作者 Yong LI Meihui WANG Bo WANG Ji LIU Jianlin SHEN Xunhua ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1804-1820,共17页
Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in rec... Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems. 展开更多
关键词 N_(2)O emissions influencing factors nitrogen cycling upland farming systems
下载PDF
Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility:A meta-analysis
9
作者 Xiyan Jiang Xiaojing Wang +7 位作者 Yaqi Qiao Yi Cao Yan Jiao An Yang Mengzhou Liu Lei Ma Mengya Song Shenglei Fu 《Forest Ecosystems》 SCIE CSCD 2024年第3期307-317,共11页
Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and... Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition. 展开更多
关键词 C:N:P stoichiometry META-ANALYSIS Forest ecosystem nitrogen addition form Nutrient cycles
下载PDF
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
10
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest soil organic matter fractions EARTHWORM MILLIPEDES Litter decomposition
下载PDF
Improvement of Wolfberry(Lycium barbarum L.)Fruit Yield and Quality and Enhancement of Soil Fertility by Nitrogen Reduction Combined with Organic Fertilizers
11
作者 Yajun Xin Congcong Li +7 位作者 Tingting Xu Youliang Wang Rong Fu Tahir Shah Shouzhong Xie Rong Zhang Haiyan Sheng Yajun Gao 《Journal of Agricultural Science and Technology(A)》 2024年第1期1-18,共18页
Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilize... Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation. 展开更多
关键词 WOLFBERRY fruit quality antioxidant activity organic fertilizer nitrogen fertilizer
下载PDF
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:3
12
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:1
13
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Effects of long-term grazing exclusion on vegetation structure,soil water holding capacity,carbon and nitrogen sequestration capacity in an alpine meadow on the Tibetan Plateau 被引量:2
14
作者 YANG Yong-sheng ZHANG Fa-wei +5 位作者 XIE Xian-rong WANG Jun-bang LI Ying-nian HUANG Xiao-tao LI Hui-ting ZHOU Hua-kun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期779-791,共13页
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d... Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion. 展开更多
关键词 Long-term grazing exclusion soil water holdingcapacity soilcarbonand nitrogen sequestration BIOMASS Alpine meadow
下载PDF
Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation 被引量:2
15
作者 FENG Xu-yu PU Jing-xuan +5 位作者 LIU Hai-jun WANG Dan LIU Yu-hang QIAO Shu-ting LEI Tao LIU Rong-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期897-907,共11页
Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse e... Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production. 展开更多
关键词 alternate partial root-zone irrigation drip fertigation soil water soil mineral content tomato yield
下载PDF
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study 被引量:1
16
作者 BAI Jin-shun ZHANG Shui-qing +5 位作者 HUANG Shao-min XU Xin-peng ZHAO Shi-cheng QIU Shao-jun HE Ping ZHOU Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3517-3534,共18页
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Hu... To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers. 展开更多
关键词 soil aggregate fractions soil organic matter manure application straw return C:N ratio
下载PDF
Soil water content and nitrogen differentially correlate with multidimensional leaf traits of two temperate broadleaf species
17
作者 Ming-Yue Jin Daniel J.Johnson +2 位作者 Guang-Ze Jin Qing-Xi Guo Zhi-Li Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第6期694-701,共8页
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ... The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes. 展开更多
关键词 Leaf trait multidimensionality Economics traits Vein traits soil water content soil total nitrogen Shade tolerance
下载PDF
The Effects of Water and Fertilizer Coupling on Plant and Soil Nitrogen Characteristics and Fruit Growth of Rabbiteye Blueberry Plants in a Semi-Arid Region in China
18
作者 Xiaolan Guo Di Zhao +3 位作者 Jinbin Hu Delu Wang Jianbin Wang Muhammad Shakeel 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期209-223,共15页
To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two facto... To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two factors(water and fertilizer application)with four levels of irrigation and three levels of fertilization,and a control.Under the different water and fertilizer combinations,N primarily accumulated in the leaves.Irrigation and N application within appropriate ranges(pure N≤29 g/plant and irrigation volume≤2.5 L/plant)significantly improved the blueberry fruit yield.Increases in water and N within these ranges promoted the effective accumulation of N in various organs and the absorption and utilization of N in the plants,which ultimately promoted blueberry yield.With increased N application rate,the nitrate N content of the 0–20 cm and 20–50 cm soil layers increased.With increased irrigation volume,the nitrate N content of the 0–20 cm soil layer decreased,while the nitrate content in the 20–50 cm soil layer increased.Low N and moderate water treatments resulted in high fruit yields and reduced nitrate N retention in the soil.Under these conditions,the economic input-output ratio was high and the soil N accumulation was low,and thus the economic and ecological benefits were maximized. 展开更多
关键词 Vaccinium virgatum soil nitrogen distribution plant nitrogen utilization fruit yield
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis 被引量:2
19
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 GROUNDWATER NITRATE soil Spatial-temporal variation Geostatistical analysis
下载PDF
Evaluating the Effects of Aquaculture Wastewater Irrigation with Fertilizer Reduction on Greenhouse Tomato Production,Economic Benefits and Soil Nitrogen Characteristics
20
作者 Hang Guo Linxian Liao +4 位作者 Zhenhao Zheng Junzeng Xu Qi Wei Peng Chen Kechun Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第12期3291-3304,共14页
The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the patt... The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status,fruit yield and water-fertilizer use efficiency for tomato production.In this context,the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields.Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization used as control(CK),1.75 L aquaculture wastewater with base fertilizer(W1),2 L aquaculture wastewater with base fertilizer;and 2.25 L aquaculture wastewater with base fertilizer(W3).We examined the effects of aquaculture wastewater irrigation on soil nitrogen distribution,Nrelated hydrolases,tomato yield,and economic benefits.The results showed that the control treatment had the highest N input,about 24.68%higher than the W3 treatment,while the yield was only about 7.81%higher than W3.This indicated that the overuse of chemical fertilizer was present in the current tomato production.Although the reduction of fertilizer in aquaculture wastewater irrigation caused a decrease in tomato production,this economic loss can be compensated by cost savings in the wastewater disposal.Among aquaculture wastewater treatments,the W3 treatment had the highest overall benefit,achieving 62.63%freshwater savings,37.50%fertilizer input reduction,and an economic return of approximately 19,466 Yuan per hectare higher than the control.Additionally,increasing the irrigation volume of aquaculture wastewater could provide more available nutrients to the soil,which were more prevalent in the form of organic nitrogen.The lower soil nitrate reductase activities(NR)under aquaculture wastewater treatments after harvesting also proved that this pattern was beneficial to reduce soil nitrate nitrogen residues.Overall,the results demonstrate that aquaculture wastewater irrigation alleviates the soil nitrate residues,improves nutrient availability,and results in more economic returns with water and fertilizer conservation for the greenhouse production of tomatoes. 展开更多
关键词 Aquaculture wastewater irrigation fertilizer reduction soil nitrogen residue tomato production
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部