期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
National Soil Organic Carbon Stocks Inventories under Different Mangrove Forest Types in Gabon
1
作者 Rolf Gaël Mabicka Obame Neil-Yohan Musadji +5 位作者 Jean Hervé Mve Beh Lydie-Stella Koutika Jean Aubin Ondo Farrel Nzigou Boucka Michel Mbina Mounguengui Claude Geffroy 《Open Journal of Forestry》 2024年第2期127-140,共14页
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear... Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data. 展开更多
关键词 Mangroves Forest soil organic carbon stocks Rizophora Racemose Avicenia germinans GABON
下载PDF
Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods 被引量:2
2
作者 SONG Xiaodong LIU Feng +4 位作者 JU Bing ZHI Junjun LI Decheng ZHAO Yuguo ZHANG Ganlin 《Chinese Geographical Science》 SCIE CSCD 2017年第4期516-528,共13页
The main aim of this paper was to calculate soil organic carbon stock(SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China.A novel prediction process ... The main aim of this paper was to calculate soil organic carbon stock(SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China.A novel prediction process was presented and was referred to as model-then-calculate with respect to the variable thicknesses of soil horizons(MCV).The model-then-calculate with fixed-thickness(MCF),soil profile statistics(SPS),pedological professional knowledge-based(PKB) and vegetation type-based(Veg) methods were carried out for comparison.With respect to the similar pedological information,nine common layers from topsoil to bedrock were grouped in the MCV.Validation results suggested that the MCV method generated better performance than the other methods considered.For the comparison of polygon based approaches,the Veg method generated better accuracy than both SPS and PKB,as limited soil data were incorporated.Additional prediction of the pedogenetic horizons within MCV benefitted the regional SOCS estimation and provided information for future soil classification and understanding of soil functions.The intermediate product,that is,horizon thickness maps were fluctuant enough and reflected many details in space.The linear mixed model indicated that mean annual air temperature(MAAT) was the most important predictor for the SOCS simulation.The minimal residual of the linear mixed models was achieved in the vegetation type-based model,whereas the maximal residual was fitted in the soil type-based model.About 95% of SOCS could be found in Argosols,Cambosols and Isohumosols.The largest SOCS was found in the croplands with vegetation of Triticum aestivum L.,Sorghum bicolor(L.) Moench,Glycine max(L.) Merr.,Zea mays L.and Setaria italica(L.) P.Beauv. 展开更多
关键词 soil organic carbon stock model-then-calculate random forest linear mixed model northeastern China
下载PDF
Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China 被引量:1
3
作者 Shuai Wang Bol Roland +4 位作者 Kabindra Adhikari Qianlai Zhuang Xinxin Jin Chunlan Han Fengkui Qian 《Forest Ecosystems》 SCIE CSCD 2023年第2期141-152,共12页
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o... Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale. 展开更多
关键词 soil organic carbon stocks Forest ecosystem Spatial-temporal variation carbon sink Digital soil mapping
下载PDF
Soil Organic Carbon Stock and Soil Quality under Four Major Agroecosystems in the Eastern Flank of Mount Bambouto (West-Cameroon)
4
作者 Ade Linda Wijungbwen Cedrick Nguemezi +1 位作者 Duchel Ivilin Voulemo Djeuhala Paul Tematio 《Journal of Geoscience and Environment Protection》 2023年第9期40-53,共14页
Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil... Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil quality SQ in the main agroecosystems (AES) of the eastern flank of Mount Bambouto (West, Cameroon). Using multiple statistics tests and principal component analysis (PCA), SOCS and Soil Quality Index (SQI) were computed for each AES. SOCS and SQI were computed based on soil chemical properties and analysis of variance. Topsoil samples (0 - 30 cm) were collected in a different AES and analyzed in the laboratory. The four AES identified and selected are cultivated land (CL), forest areas (FA), mixed areas (MA), and bush areas (BA). Further, multiple comparison tests were used to compare soils from different AES. PCA was used to select the most appropriate indicators that control SOCS and SQ. Several soil properties showed high to very high coefficient of variation within the AES. Organic matter (OM) was significantly high in FA. SOCS and SQ differ significantly (p = 0.000) between the AES. The study further indicates that the main variables controlling SQ within the eastern flank of Mount Bambouto are OM, pHw, N, C/N, and CEC. While the main soil parameters controlling SOCS are OM, OC, BD, C/N, S, and pHKCl. 展开更多
关键词 soil organic carbon Stock soil Quality AGROECOSYSTEMS Principal Component Analysis Mount Bambouto
下载PDF
Soil Organic Carbon Stock as Affected by Land Use/Cover Changes in the Humid Region of Northern Iran 被引量:3
5
作者 Samereh FALAHATKAR Seyed Mohsen HOSSEINI +2 位作者 Abdolrassoul SALMAN MAHINY Shamsollah AYOUBI WANG Shao-qiang 《Journal of Mountain Science》 SCIE CSCD 2014年第2期507-518,共12页
【Title】【Author】This study was conducted to determine the changes in the soil carbon stocks as influenced by land use in a humid zone of Deylaman district (10,876 ha), a mountainous region of northern Iran. For t... 【Title】【Author】This study was conducted to determine the changes in the soil carbon stocks as influenced by land use in a humid zone of Deylaman district (10,876 ha), a mountainous region of northern Iran. For this, land use maps were produced from TM and ETM+ images for 1985, 2000 and 2010 years; and this was supplemented by field measurement of soil carbon in 2010. The results showed that the mean soil organic carbon (SOC) density was 6.7±1.8 kg C m-2, 5.2±3.4 kg C m-2 and 3.2±1.8 kg C m-2 for 0-20 cm soil layer and 4.8±1.9 kg C m-2, 3.1±2 kg C m-2 and 2.7±1.8 kg C m-2 for 20-40 cm soil layer in forest, rangeland and cultivated land, respectively. During the past 25 years, 14.4% of the forest area had been converted to rangeland; and 28.4% of rangelands had been converted to cultivated land. According to the historical land use changes in the study area, the highest loss of SOC stocks resulted from the conversion of the forest to rangeland (0.45×104 Mg C in 0-40 cm depth layer); and the conversion of rangeland to cultivated land (0.37×104 Mg C in 0-40 cm), which typically led to the loss of soil carbon in the area studied. The knowledge on the historical land use changes and its influence on overall SOC stocks could be helpful for making management decision for farmers and policy managers in the future, for enhancing the potential of C sequestration in northern Iran. 展开更多
关键词 soil organic carbon stocks Land cover Land use Iran
下载PDF
Above and below ground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas
6
作者 Mehraj A.SHEIKH Sanjay KUMAR Munesh KUMAR 《Forestry Studies in China》 CAS 2012年第3期205-209,共5页
Accurate estimates of tree carbon, forest floor carbon and organic carbon in forest soils (SOC) are important in order to determine their contribution to global carbon (C) stocks. However, information about these ... Accurate estimates of tree carbon, forest floor carbon and organic carbon in forest soils (SOC) are important in order to determine their contribution to global carbon (C) stocks. However, information about these carbon stocks is lacking. Some studies have investigated regional and continental scale patterns of carbon stocks in forest ecosystems; however, the changes in C storage in dif- ferent components (vegetation, forest floor and soil) as a function of elevation in forest ecosystems remain poorly understood. In this study, we estimate C stocks of vegetation, forest floor and soils of a Pinus roxburghii Sargent forest in the Garhwal Himalayas along a gradient to quantify changes in carbon stock due to differences in elevation at three sites. The biomass of the vegetation changes drastically with increasing elevation among the three sites. The above-ground biomass (AGB) and below-ground biomass (BGB) were highest at site I (184.46 and 46.386 t·ha^-1 respectively) at an elevation of 1300 m followed by site II (173.99 and 44.057 t·ha^-1 AGB and BGB respectively) at 1400 m and the lowest AGB and BGB were estimated at site III (161.72 and 41.301t·ha^-1) at 1500 m. The trend for SOC stock was similar to that of biomass. Our results suggest that carbon storage (in both soil and biomass) is nega- tively correlated with elevation. 展开更多
关键词 biomass carbon organic carbon stock in soils sub-tropical region HIMALAYAS
下载PDF
Fractionation of Organic Carbon and Stock Measurement in the Sundarbans Mangrove Soils of Bangladesh
7
作者 Sayada Momotaz Akther Md Mahfuz Islam +1 位作者 Md Faruque Hossain Zakia Parveen 《American Journal of Climate Change》 2021年第4期561-580,共20页
Mangrove soils are well known for their high capacity of storing organic carbon (SOC) in various pools;however, a relatively small change in SOC pools could cause significant impacts on greenhouse gas concentrations. ... Mangrove soils are well known for their high capacity of storing organic carbon (SOC) in various pools;however, a relatively small change in SOC pools could cause significant impacts on greenhouse gas concentrations. Thus, for an in-depth understanding of SOC distribution and stock to predict the role of Sundarbans mangrove in mitigating global warming and greenhouse effects, different extraction methods were employed to fractionate the SOC of Sundarbans soils into cold-water (CWSC) and hot-water (HWSC) soluble, moderately labile (MLF), microbial biomass carbon (MBC), and resistant fractions (RF) using a newly developed modified-method. A significant variation in total SOC (p < 0.001), SOC stock (p < 0.001) and soil bulk density (p < 0.05) at the Sundarbans mangrove forest were observed. In most soils, bulk density increased from the surface to 100 cm depth. The total SOC concentrations were higher in most surface soils and ranged from 1.21% ± 0.02% to 8.19% ± 0.09%. However, C in lower layers may be more resistant than that of upper soils because of differences in compositions, sources and environmental conditions. SOC was predominately associated with the resistant fraction (81% - 97%), followed by MLF (2% - 10%), HWSC (1% - 4%), MBC (~0% - 4%), and CWSC (~0% - 3%). The significant positive correlations between different C fractions suggested that C pools are interdependent and need proper management plans to increase these pools in Sundarbans soils. The SOC stock of the studied areas ranged between 16.75 ± 3.83 to 135.12 ± 28.61 kg·C·m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>2</sup> in 1 m soil profile and has an average of 31.80 kg·C·m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>2</sup>. The substratum soils had more carbon than the upper layers in the Sundarbans wetland due to burial and preservation of carbon by frequent tidal inundation. A higher SOC stock in the soil profile and its primary association in resistant fractions suggested that Sundarbans mangrove soil is sequestering carbon and thereby serving as a significant carbon sink in Bangladesh. 展开更多
关键词 carbon Sequestration carbon Sink carbon Source soil organic carbon Stock Sundarbans Mangrove Forest
下载PDF
The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland 被引量:22
8
作者 WANG Shi-chao ZHAO Ya-wen +5 位作者 WANG Jin-zhou ZHU Ping CUI Xian HAN Xiao-zeng XU Ming-gang LU Chang-ai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期436-448,共13页
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effect... Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool. 展开更多
关键词 soil organic carbon(SOC) SOC stock straw return soil sequestration rate straw-C sequestration efficiency black soil long-term experiments
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部