This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive t...This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive torque, which in turn can be used for traversability prediction, traction control, and performance optimization of a wheeled vehicle on unknown terrain. The proposed technique is based on the Newton Raphson method. An approximated form of a wheel-soil interaction model based on Composite Simpson's Rule is employed for this purpose. The key soil parameters to be identified are internal friction angle, shear deformation modulus, and lumped pressure-sinkage coefficient. The fourth parameter, cohesion, is not too relevant to vehicle drawbar pull, and is assigned an average value during the identification process. Identified parameters are compared with known values, and shown to be in agreement. The identification method is relatively fast and robust. The identified soil parameters can effectively be used to predict drawbar pull and wheel drive torque with good accuracy. The use of identified soil parameters to design a traversability criterion for wheeled vehicles traversing unknown terrain is presented.展开更多
In this paper, dynamic soil parameters derived from Dalian area seismic risk assessment reports are collected. In this study, the measurement data is divided into 7 types, i.e. silty clay, muddy silty clay, clay, medi...In this paper, dynamic soil parameters derived from Dalian area seismic risk assessment reports are collected. In this study, the measurement data is divided into 7 types, i.e. silty clay, muddy silty clay, clay, medium sand, rock fragments, backfill soil and fully-weathered slate. Statistics of the dynamic parameters of these soils are carried out to obtain the mean values of dynamic shear modulus ratio and damping ratio. Typical drill holes are selected to establish dynamic soil models to investigate the seismic response for various cases. The dynamic parameters of the models are taken from the statistical values of this study, the standard values of code 94 (i.e. the dynamic soil parameters for Dalian seismic microzonation), and the recommended values by Yuan Xiaoming et al. (2000) respectively. The calculated results of peak ground acceleration are compared with the response spectral characteristics. The results show that the statistical values are approximate to the values recommended by Yuan Xiaoming, et al. (2000), but different greatly with the standard values in code 94.展开更多
Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the...Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.展开更多
The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes ...The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.展开更多
This paper presents a confidence ellipse-based method to evaluate the similarity of soil parametric data using the database from the site investigation reports.Then,the obtained similarity assessment results of parame...This paper presents a confidence ellipse-based method to evaluate the similarity of soil parametric data using the database from the site investigation reports.Then,the obtained similarity assessment results of parametric data are used to further estimate the site similarity via two proposed strategies,namely the mean and weighted mean approaches.The former referred to the average of parametric data similarity degrees,while the latter was the weighted average,and the weight was calculated using the coefficient of variation(COV)of each parameter.For illustration,the liquidity index(LI)dataset was firstly used to explore the performance of the presented method in the evaluation of parametric data similarity.Subsequently,the site similarity was assessed and the effects of numbers and weights of selected parameters for study were systematically studied.Lastly,the transformation models about the relationships between Cc and x as well as between Cc and e0 were constructed to illustrate the application of the similarity analysis in reduction of transformation uncertainty.Results show that the greatest site similarity degree is at about 0.76 in this study,and the maximum decrease of transformation uncertainty can reach up to 18%and 25.5%as union parametric data similarity degree increases.Moreover,the site similarity degree represents the whole similarity between two different sites,and the presented union parameter similarity degree maintains a good agreement with transformation uncertainty.展开更多
The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimu...The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimum soil data set, physical and chemical soil parameters in combination with environmental parameters (land use, gradients). The SHI is one numerical value accumulates information about the state of soil health and its ability to provide soil functions and thus ecosystems in the optimal range. The highest SHI values were determined at model localities used as arable land (Haplic Chernozem, Fluvisol) located in a warm climate at altitudes up to 200 meters above sea level. Ecosystems with very low and low value are mostly grasslands with mildly cold climate (Cambisol) and considerable slope, agroecosystem on low organic matter (Arenosol). Arable ecosystem SHI is also reduced in areas of geochemical anomalies and areas with anthropogenic load, where there is a higher content of risk elements. The SHI changes are mainly the result of changes in dynamic indicators such as soil response and soil bulk density.展开更多
A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addit...A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addition, an estimation method for hydraulic diffusivity with disc infiltrometer was developed. The results indicated a favorable fit of the theoretical relation to the experimental data. Also, the experiment with disc infiltrometer for estimating the diffusivity showed that the new method was feasible.展开更多
Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held ...Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held constant at 35 mm and then at 70 mm while speed was varied at three levels of 1.0, 3.6 and 9.0 km/h. The widths of the tines tested were 10, 20, 31, 40, 51, 88, 126, 163 and 200 mm. The cone penetration resistance of the soil varied from 400 to 600 kPa. Draught was measured with a load cell while soil disturbance was measured with a profile meter and meter rule. Draught increased at a decreasing rate with tine width. Quadratic models best fitted the data points with high R2 values. The increase in draught was affected by the forward speed since higher draught values were obtained at higher speed. Results show that the parameters of soil disturbance increased with increase in tine width, except height of ridge (hr), which did not show any specific trend. The specific draught was highest (10.63 N/cm) with tine T20 while Tine T1 had the least specific draught of 5.2 N/cm.展开更多
There are many different and even controversial results concerning the effects of Tamarisk on the physicochemical properties of soil. A year-round monitoring of soil salinity, p H and moisture is conducted beneath the...There are many different and even controversial results concerning the effects of Tamarisk on the physicochemical properties of soil. A year-round monitoring of soil salinity, p H and moisture is conducted beneath the Tamarisk shrub in a coastal wetland in the Bohai Sea in China, to ascertain the effects of Tamarisk on the physicochemical properties of soil in coastal wetland. Compared with the control area, the soil moisture content is lower around the area of the taproot when there is less precipitation in the growing season because of water consumption by Tamarisk shrub. However, the soil moisture content is higher around the taproot when there is more precipitation in the growing season or in the non-growing period because of water conservation by the rhizosphere. The absorption of salt by the Tamarisk shrub reduces the soil salinity temporarily, but eventually salt returns to the soil by the leaching of salt on leaves by rainfall or by fallen leaves. The annual average soil moisture content beneath the Tamarisk shrub is lower than the control area by only 6.4%, indicating that the Tamarisk shrub has little effect on drought or water conservation in soils in the temperate coastal wetland with moderate annual precipitation. The annual average salinity beneath the Tamarisk shrub is 18% greater than that of the control area, indicating that Tamarisk does have an effect of rising soil salinity around Tamarisk shrubs. The soil p H value is as low as 7.3 in summer and as high as 10.2 in winter. The p H of soil near the taproot of the Tamarisk shrubs is one p H unit lower than that in the control area during the growing season. The difference in p H is less different from the control area in the non-growing season, indicating that the Tamarisk shrub does have the effect of reducing the alkalinity of soil in coastal wetland.展开更多
The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(...The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.展开更多
Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in diffe...Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in different depths are obtained after statistical analysis of the experimental soil dynamic data from 20 recent site seismic safety evaluation reports in the Beijing area. Furthermore,based on two typical engineering sites,the influence of four different soil dynamic parameters,the statistic mean values,experimental values, values recommended by Yuan Xiaoming,and the values recommended in the code for seismic safety evaluation of engineering sites( DB001-94) are analyzed. The result shows that mean statistical values are applicable to seismic safety evaluation work in the Beijing area,especially for some inter-layered silty clays whose undisturbed soil samples are hard to obtain.展开更多
In this paper, the influential design thctors of wide-shallow composite bucket foundation for 3 MW off- shore wind turbine are systematically studied by numerical simulation. The results show that the bucket diameter ...In this paper, the influential design thctors of wide-shallow composite bucket foundation for 3 MW off- shore wind turbine are systematically studied by numerical simulation. The results show that the bucket diameter is larger than 27 m in generak and the range of 7--12 m is appropriate for cylinder height. In particular the bucket foun- dation with diameter of 30 m and cylinder height of 10 m is suitable for most soils. Under ultimate loads, the bucket diameter and elasticity modulus of soil have major effects on the deibrmability of bucket foundation, while the influ- ence of friction coefficient between the bucket and soil is relatively slight.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Process-based crop simulation models are useful for simulating the impacts of climate change on crop yi...<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Process-based crop simulation models are useful for simulating the impacts of climate change on crop yields. Currently, estimation of spatially calibrated soil parameters for crop models can be challenging, as it requires the availability of long-term and detailed input data from several sentinel sites. The use of aggregated regional data for model calibrations has been proposed but not been employed in regional climate change studies. The study: 1) employed the use of county-level data to estimate spatial soil parameters for the calibration of CROPGRO-Soybean model and 2) used the calibrated model, assimilated with future climate data, in assessing the impacts of climate change on soybean yields. The CROPGRO-Soybean model was calibrated using major agricultural soil types, crop yield and current climate data at county level, for selected counties in Alabama for the period 1981-2010. The calibrated model simulations were acceptable with performance indicators showing Root Mean Square Error percent of between 27 - 43 and Index of Agreement ranging from 0.51 to 0.76. Projected soybean yield decreased by an average of 29% and 23% in 2045, and 19% and 43% in 2075, under Representative Concentration Pathways 4.5 and 8.5, respectively. Results showed that late-maturing soybean cultivars were most resilient to heat, while late-maturing cultivators needed optimized irrigation to maintain appropriate soil moisture to sustain soybean yields. The CROPGRO-Soybean phenological and yield simulations suggested that the negative effects of increasing temperatures could be counterbalanced by increasing rainfall, optimized irrigation, and cultivating late-maturing soybean cultivars. </div>展开更多
The aim of the study was to assess the effect of natural phytoremediation, impact of growing fast-growing trees on contaminated agricultural land on ecosystem services using a Matrix evaluation system. The Matrix syst...The aim of the study was to assess the effect of natural phytoremediation, impact of growing fast-growing trees on contaminated agricultural land on ecosystem services using a Matrix evaluation system. The Matrix system is a table that links an ecosystem to its potential to provide ecosystem services. To determine the monetary price of natural capital for the provision of ecosystem services, we chose the value transfer method, based on which it is possible to assign a price (1 point = 40.7 EUR) to point values. Monitoring of the study site Kuchyňa (Mollic Fluvisol) is running since year 2010. The fast-growing willow was planted (between 2006 to 2018 year) on an area of about 43 hectares. During the monitoring of soil parameters, we observed a slight decrease in the value of the active soil reaction, a negative trend in the content of available phosphorus and a positive trend in the development of the total content risk elements in the soil. The phytoremediation ability of willow regarding risk elements was manifested by an increase in the value and price of production and regulatory ecosystem services at the monitored location. The price of natural phytoremediation of fast-growing willow on the given area was 218762.5 EUR for production services and 171509.8 EUR for regulatory services.展开更多
This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine gr...This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine grassland stations and North China flux stations, with a total of 34 stations and 77 soil profiles. Measured data indicate that the topsoils of alpine grasslands contain high SOC contents than underlying soil layers, which leads to higher soil porosity values and lower thermal conductivity and bulk density values in the topsoils. However, this stratification is not evident at the lowland stations due to low SOC contents. Evaluations against measured data show that three thermal conductivity schemes used in land surface models severely overestimate the values for soils with high SOC content (i.e. topsoils of alpine grassland), but they are better for soils with low SOC content. A new parameterization is then developed to take the impacts of SOC into account. The new one can well estimate the soil thermal conductivity values in both low and high SOC content cases, and therefore, it is a potential candidate of thermal conductivity scheme to be used in land surface models.展开更多
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma...A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license展开更多
The decrease of fertility soils, the rarity of quality potting soil used to fill nursery bags, the high cost of chemical fertilisers and the problems associated with their use are leading planters and rubber nurseryme...The decrease of fertility soils, the rarity of quality potting soil used to fill nursery bags, the high cost of chemical fertilisers and the problems associated with their use are leading planters and rubber nurserymen in developing and/or expanding areas to look for alternative and sustainable fertilization. In this perspective, a trial was carried out at Research Station of CNRA-Bimbresso and in a farmer’s environment in order to evaluate the agronomic quality of compost made from chicken droppings and dry <em>Panicum maximum</em> straw to improve the growth of rubber plants in bagged nurseries. Mixtures based on potting soil and/or compost in different proportions were prepared. The follow-up of the trial focused on determination of the physico-chemical characteristics of the soils, measurement of the parameters of vegetative growth and the grafting success rate evaluation of rubber plants in nursery. The results obtained show that compost-based crop substrates increase soil organic matter, nitrogen, exchangeable bases, etc., in proportion to the doses applied. For the pH, the application of compost resulted in a reduction in soil acidity of about 1.3 unit compared to the initial values at the two study sites. The vegetative behaviour of the rubber plants also shows that qualitative (height and collar diameter) and quantitative (grafting success rate) improvements were recorded in the plants raised in compost-based substrates. The production of rubber plants in bagged nurseries was optimal with compost doses of 27 t<span style="white-space:nowrap;">⋅</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> (at Bimbresso, in the southeast) and 27 t<span style="white-space:nowrap;">⋅</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> combined with fractionated application of urea (at Kimoukro, in the centre), which under the conditions of the present study may be the recommended doses on rubber plants in bagged nurseries at C<span style="white-space:nowrap;">ô</span>te d’Ivoire.展开更多
Estimation of the plant-available water capacity(PAWC)of soils at a regional scale helps in adopting better land use planning,developing suitable irrigation schedules for crops,and optimizing the use of scarce water r...Estimation of the plant-available water capacity(PAWC)of soils at a regional scale helps in adopting better land use planning,developing suitable irrigation schedules for crops,and optimizing the use of scarce water resources.In the current study,72 soil profiles were sampled from the Barossa region of South Australia to estimate pedo-transfer functions deduced from easily estimated soil properties.These functions were then used to estimate the fixed(10 and 33 kPa)and dynamic pressure head(h_(fc))water contents at field capacity(FC)for minimum drainage flux(0.01 and 0.001 cm d^(-1)),which serves as the upper boundary for plant-available water in soils.The estimated residual water content was corrected for subsoil constraints,especially the exchangeable sodium percentage(ESP).The results showed that the mean values of h_(fc)in sand-dominated light and medium textured soils(i.e.,sand,loamy sand,sandy loam,and loam)varied in a narrow range(15.8-18.2 kPa),whereas those in the clay-dominated heavy textured soils(i.e.,clay loam)showed a wide range(11.3-49.3 kPa).There were large differences in PAWC for dynamic FC(PAWC_(fc))and fixed FC at 10 kPa(PAWC10),33 kPa(PAWC33),and a mix of 10and 33 kPa(PAWC_(10,33))pressure heads depending on soil texture.Normally,the difference between PAWC at 10 kPa and h_(fc)(ΔPAWC_(10))was positive,whereas that between 33 kPa and h_(fc)(ΔPAWC_(33))was negative across all sites.Nevertheless,the estimation of PAWC assuming a fixed FC at 10 and 33 kPa pressures(i.e.,PAWC_(10,33))for sandy,clay,and silty soils reduced the difference between fixed and dynamic pressure PAWCs to<10% across the region.The estimation of PAWC was improved by incorporating the impact of subsoil constraints,such as high ESP,which was more pronounced for clay and silty soils.These findings demonstrate the inherent inconsistencies between static pressure and flux-based dynamic FC estimations in soils.Soil heterogeneity,intra-texture variability,subsoil constraints,and swell-shrink clays can have great impacts on the water retention capacity in response to dynamic and fixed pressure FC values.展开更多
Accumulation of heavy metals in soils poses a potential risk to plant production, which is related to availability of the metals in soil. The phytoavailability of metals is usually evaluated using extracting solutions...Accumulation of heavy metals in soils poses a potential risk to plant production, which is related to availability of the metals in soil. The phytoavailability of metals is usually evaluated using extracting solutions such as salts, acids or chelates. The purpose of this study was to identify the most significant soil parameters that can be used to predict the concentrations of acetic and citric acidextractable cadmium(Cd), lead(Pb) and zinc(Zn) in contaminated woody habitat topsoils. Multiple linear regression models were established using two analysis strategies and three sets of variables based on a dataset of 260 soil samples. The performance of these models was evaluated using statistical parameters. Cation exchange capacity, CaCO_3, organic matter, assimilated P, free Al oxide,sand and the total metal concentrations appeared to be the main soil parameters governing the solubility of Cd, Pb and Zn in acetic and citric acid solutions. The results strongly suggest that the metal solubility in extracting solutions is extractable concentrationdependent since models were overall improved by incorporating a change point. This change point detection method was a powerful tool for predicting extractable Cd, Pb and Zn. Suitable predictions of extractable Cd, Pb and Zn concentrations were obtained, with correlation coefficient(adjusted r) ranging from 0.80 to 0.99, given the high complexity of the woody habitat soils studied. Therefore,the predictive models can constitute a decision-making support tool for managing phytoremediation of contaminated soils, making recommendations to control the potential bioavailability of metals. The relationships between acetic and/or citric acid-extractable concentrations and the concentrations of metals into the aboveground parts of plants need to be predicted, in order to make their temporal monitoring easier.展开更多
Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use ch...Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uniand multivariate (redundancy analysis) methods. Results The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50;p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. Conclusions The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.展开更多
基金This work was supported in part by the EPSRC (No.GR/S31402/01).
文摘This paper presents a novel technique for identifying soil parameters for a wheeled vehicle traversing unknown terrain. The identified soil parameters are required for predicting vehicle drawbar pull and wheel drive torque, which in turn can be used for traversability prediction, traction control, and performance optimization of a wheeled vehicle on unknown terrain. The proposed technique is based on the Newton Raphson method. An approximated form of a wheel-soil interaction model based on Composite Simpson's Rule is employed for this purpose. The key soil parameters to be identified are internal friction angle, shear deformation modulus, and lumped pressure-sinkage coefficient. The fourth parameter, cohesion, is not too relevant to vehicle drawbar pull, and is assigned an average value during the identification process. Identified parameters are compared with known values, and shown to be in agreement. The identification method is relatively fast and robust. The identified soil parameters can effectively be used to predict drawbar pull and wheel drive torque with good accuracy. The use of identified soil parameters to design a traversability criterion for wheeled vehicles traversing unknown terrain is presented.
文摘In this paper, dynamic soil parameters derived from Dalian area seismic risk assessment reports are collected. In this study, the measurement data is divided into 7 types, i.e. silty clay, muddy silty clay, clay, medium sand, rock fragments, backfill soil and fully-weathered slate. Statistics of the dynamic parameters of these soils are carried out to obtain the mean values of dynamic shear modulus ratio and damping ratio. Typical drill holes are selected to establish dynamic soil models to investigate the seismic response for various cases. The dynamic parameters of the models are taken from the statistical values of this study, the standard values of code 94 (i.e. the dynamic soil parameters for Dalian seismic microzonation), and the recommended values by Yuan Xiaoming et al. (2000) respectively. The calculated results of peak ground acceleration are compared with the response spectral characteristics. The results show that the statistical values are approximate to the values recommended by Yuan Xiaoming, et al. (2000), but different greatly with the standard values in code 94.
基金Project(51274251)supported by the National Natural Science Foundation of China
文摘Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.
基金sponsored by the State-level Public Welfare Scientific Research Courtyard Basic Scientific Research ProgramInstitute of Crustal Dynamics+1 种基金CEA (ZDJ2009-07ZDJ2009-23)
文摘The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.
基金financial support from National Major Scientific Instruments Development Project of China(5202780029)Program of Distinguished Young Scholars Natural Science Foundation of Chongqing China(cstc2020jcyj-jq0087)+1 种基金National Natural Science Foundation of China(52078086)Chongqing Construction Science and Technology Plan Project(2019-0045)。
文摘This paper presents a confidence ellipse-based method to evaluate the similarity of soil parametric data using the database from the site investigation reports.Then,the obtained similarity assessment results of parametric data are used to further estimate the site similarity via two proposed strategies,namely the mean and weighted mean approaches.The former referred to the average of parametric data similarity degrees,while the latter was the weighted average,and the weight was calculated using the coefficient of variation(COV)of each parameter.For illustration,the liquidity index(LI)dataset was firstly used to explore the performance of the presented method in the evaluation of parametric data similarity.Subsequently,the site similarity was assessed and the effects of numbers and weights of selected parameters for study were systematically studied.Lastly,the transformation models about the relationships between Cc and x as well as between Cc and e0 were constructed to illustrate the application of the similarity analysis in reduction of transformation uncertainty.Results show that the greatest site similarity degree is at about 0.76 in this study,and the maximum decrease of transformation uncertainty can reach up to 18%and 25.5%as union parametric data similarity degree increases.Moreover,the site similarity degree represents the whole similarity between two different sites,and the presented union parameter similarity degree maintains a good agreement with transformation uncertainty.
文摘The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimum soil data set, physical and chemical soil parameters in combination with environmental parameters (land use, gradients). The SHI is one numerical value accumulates information about the state of soil health and its ability to provide soil functions and thus ecosystems in the optimal range. The highest SHI values were determined at model localities used as arable land (Haplic Chernozem, Fluvisol) located in a warm climate at altitudes up to 200 meters above sea level. Ecosystems with very low and low value are mostly grasslands with mildly cold climate (Cambisol) and considerable slope, agroecosystem on low organic matter (Arenosol). Arable ecosystem SHI is also reduced in areas of geochemical anomalies and areas with anthropogenic load, where there is a higher content of risk elements. The SHI changes are mainly the result of changes in dynamic indicators such as soil response and soil bulk density.
基金Project supported by the Hundred Talents Program of the Chinese Academy of Sciences, the National Basic Research Program of China (No. 2005CB121103) and the National Natural Science Foundation of China (Nos. 40371057 and 50479065).
文摘A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addition, an estimation method for hydraulic diffusivity with disc infiltrometer was developed. The results indicated a favorable fit of the theoretical relation to the experimental data. Also, the experiment with disc infiltrometer for estimating the diffusivity showed that the new method was feasible.
文摘Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held constant at 35 mm and then at 70 mm while speed was varied at three levels of 1.0, 3.6 and 9.0 km/h. The widths of the tines tested were 10, 20, 31, 40, 51, 88, 126, 163 and 200 mm. The cone penetration resistance of the soil varied from 400 to 600 kPa. Draught was measured with a load cell while soil disturbance was measured with a profile meter and meter rule. Draught increased at a decreasing rate with tine width. Quadratic models best fitted the data points with high R2 values. The increase in draught was affected by the forward speed since higher draught values were obtained at higher speed. Results show that the parameters of soil disturbance increased with increase in tine width, except height of ridge (hr), which did not show any specific trend. The specific draught was highest (10.63 N/cm) with tine T20 while Tine T1 had the least specific draught of 5.2 N/cm.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201205008
文摘There are many different and even controversial results concerning the effects of Tamarisk on the physicochemical properties of soil. A year-round monitoring of soil salinity, p H and moisture is conducted beneath the Tamarisk shrub in a coastal wetland in the Bohai Sea in China, to ascertain the effects of Tamarisk on the physicochemical properties of soil in coastal wetland. Compared with the control area, the soil moisture content is lower around the area of the taproot when there is less precipitation in the growing season because of water consumption by Tamarisk shrub. However, the soil moisture content is higher around the taproot when there is more precipitation in the growing season or in the non-growing period because of water conservation by the rhizosphere. The absorption of salt by the Tamarisk shrub reduces the soil salinity temporarily, but eventually salt returns to the soil by the leaching of salt on leaves by rainfall or by fallen leaves. The annual average soil moisture content beneath the Tamarisk shrub is lower than the control area by only 6.4%, indicating that the Tamarisk shrub has little effect on drought or water conservation in soils in the temperate coastal wetland with moderate annual precipitation. The annual average salinity beneath the Tamarisk shrub is 18% greater than that of the control area, indicating that Tamarisk does have an effect of rising soil salinity around Tamarisk shrubs. The soil p H value is as low as 7.3 in summer and as high as 10.2 in winter. The p H of soil near the taproot of the Tamarisk shrubs is one p H unit lower than that in the control area during the growing season. The difference in p H is less different from the control area in the non-growing season, indicating that the Tamarisk shrub does have the effect of reducing the alkalinity of soil in coastal wetland.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY13E080008)the Natural Science Foundation of China(Grant No.51108293)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)
文摘The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.
基金sponsored jointly by the Research Grants from Institute of Crustal Dynamics,CEA(NO. ZDJ2007-7)the 2007 Special Research Project 8-50 of the Department of Finance
文摘Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in different depths are obtained after statistical analysis of the experimental soil dynamic data from 20 recent site seismic safety evaluation reports in the Beijing area. Furthermore,based on two typical engineering sites,the influence of four different soil dynamic parameters,the statistic mean values,experimental values, values recommended by Yuan Xiaoming,and the values recommended in the code for seismic safety evaluation of engineering sites( DB001-94) are analyzed. The result shows that mean statistical values are applicable to seismic safety evaluation work in the Beijing area,especially for some inter-layered silty clays whose undisturbed soil samples are hard to obtain.
基金Supported by the National Natural Science Foundation of China(No.51379142)International Science and Technology Cooperation Program of China(No.2012DFA70490)Tianjin Municipal Natural Science Foundation(No.13JCYBJC19100 and No.13JCQNJC06900)
文摘In this paper, the influential design thctors of wide-shallow composite bucket foundation for 3 MW off- shore wind turbine are systematically studied by numerical simulation. The results show that the bucket diameter is larger than 27 m in generak and the range of 7--12 m is appropriate for cylinder height. In particular the bucket foun- dation with diameter of 30 m and cylinder height of 10 m is suitable for most soils. Under ultimate loads, the bucket diameter and elasticity modulus of soil have major effects on the deibrmability of bucket foundation, while the influ- ence of friction coefficient between the bucket and soil is relatively slight.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Process-based crop simulation models are useful for simulating the impacts of climate change on crop yields. Currently, estimation of spatially calibrated soil parameters for crop models can be challenging, as it requires the availability of long-term and detailed input data from several sentinel sites. The use of aggregated regional data for model calibrations has been proposed but not been employed in regional climate change studies. The study: 1) employed the use of county-level data to estimate spatial soil parameters for the calibration of CROPGRO-Soybean model and 2) used the calibrated model, assimilated with future climate data, in assessing the impacts of climate change on soybean yields. The CROPGRO-Soybean model was calibrated using major agricultural soil types, crop yield and current climate data at county level, for selected counties in Alabama for the period 1981-2010. The calibrated model simulations were acceptable with performance indicators showing Root Mean Square Error percent of between 27 - 43 and Index of Agreement ranging from 0.51 to 0.76. Projected soybean yield decreased by an average of 29% and 23% in 2045, and 19% and 43% in 2075, under Representative Concentration Pathways 4.5 and 8.5, respectively. Results showed that late-maturing soybean cultivars were most resilient to heat, while late-maturing cultivators needed optimized irrigation to maintain appropriate soil moisture to sustain soybean yields. The CROPGRO-Soybean phenological and yield simulations suggested that the negative effects of increasing temperatures could be counterbalanced by increasing rainfall, optimized irrigation, and cultivating late-maturing soybean cultivars. </div>
文摘The aim of the study was to assess the effect of natural phytoremediation, impact of growing fast-growing trees on contaminated agricultural land on ecosystem services using a Matrix evaluation system. The Matrix system is a table that links an ecosystem to its potential to provide ecosystem services. To determine the monetary price of natural capital for the provision of ecosystem services, we chose the value transfer method, based on which it is possible to assign a price (1 point = 40.7 EUR) to point values. Monitoring of the study site Kuchyňa (Mollic Fluvisol) is running since year 2010. The fast-growing willow was planted (between 2006 to 2018 year) on an area of about 43 hectares. During the monitoring of soil parameters, we observed a slight decrease in the value of the active soil reaction, a negative trend in the content of available phosphorus and a positive trend in the development of the total content risk elements in the soil. The phytoremediation ability of willow regarding risk elements was manifested by an increase in the value and price of production and regulatory ecosystem services at the monitored location. The price of natural phytoremediation of fast-growing willow on the given area was 218762.5 EUR for production services and 171509.8 EUR for regulatory services.
基金supported by National Natural Science Foundation of China (Grant No. 41105003)Key Project of Chinese Academy of Sciences (Grant No.KZCX2-YW-Q10-2)+1 种基金National Natural Science Foundation of China (Grant No. 91025004)Open Fund from the State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201108) that is cosponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University
文摘This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine grassland stations and North China flux stations, with a total of 34 stations and 77 soil profiles. Measured data indicate that the topsoils of alpine grasslands contain high SOC contents than underlying soil layers, which leads to higher soil porosity values and lower thermal conductivity and bulk density values in the topsoils. However, this stratification is not evident at the lowland stations due to low SOC contents. Evaluations against measured data show that three thermal conductivity schemes used in land surface models severely overestimate the values for soils with high SOC content (i.e. topsoils of alpine grassland), but they are better for soils with low SOC content. A new parameterization is then developed to take the impacts of SOC into account. The new one can well estimate the soil thermal conductivity values in both low and high SOC content cases, and therefore, it is a potential candidate of thermal conductivity scheme to be used in land surface models.
文摘A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license
文摘The decrease of fertility soils, the rarity of quality potting soil used to fill nursery bags, the high cost of chemical fertilisers and the problems associated with their use are leading planters and rubber nurserymen in developing and/or expanding areas to look for alternative and sustainable fertilization. In this perspective, a trial was carried out at Research Station of CNRA-Bimbresso and in a farmer’s environment in order to evaluate the agronomic quality of compost made from chicken droppings and dry <em>Panicum maximum</em> straw to improve the growth of rubber plants in bagged nurseries. Mixtures based on potting soil and/or compost in different proportions were prepared. The follow-up of the trial focused on determination of the physico-chemical characteristics of the soils, measurement of the parameters of vegetative growth and the grafting success rate evaluation of rubber plants in nursery. The results obtained show that compost-based crop substrates increase soil organic matter, nitrogen, exchangeable bases, etc., in proportion to the doses applied. For the pH, the application of compost resulted in a reduction in soil acidity of about 1.3 unit compared to the initial values at the two study sites. The vegetative behaviour of the rubber plants also shows that qualitative (height and collar diameter) and quantitative (grafting success rate) improvements were recorded in the plants raised in compost-based substrates. The production of rubber plants in bagged nurseries was optimal with compost doses of 27 t<span style="white-space:nowrap;">⋅</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> (at Bimbresso, in the southeast) and 27 t<span style="white-space:nowrap;">⋅</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup> combined with fractionated application of urea (at Kimoukro, in the centre), which under the conditions of the present study may be the recommended doses on rubber plants in bagged nurseries at C<span style="white-space:nowrap;">ô</span>te d’Ivoire.
文摘Estimation of the plant-available water capacity(PAWC)of soils at a regional scale helps in adopting better land use planning,developing suitable irrigation schedules for crops,and optimizing the use of scarce water resources.In the current study,72 soil profiles were sampled from the Barossa region of South Australia to estimate pedo-transfer functions deduced from easily estimated soil properties.These functions were then used to estimate the fixed(10 and 33 kPa)and dynamic pressure head(h_(fc))water contents at field capacity(FC)for minimum drainage flux(0.01 and 0.001 cm d^(-1)),which serves as the upper boundary for plant-available water in soils.The estimated residual water content was corrected for subsoil constraints,especially the exchangeable sodium percentage(ESP).The results showed that the mean values of h_(fc)in sand-dominated light and medium textured soils(i.e.,sand,loamy sand,sandy loam,and loam)varied in a narrow range(15.8-18.2 kPa),whereas those in the clay-dominated heavy textured soils(i.e.,clay loam)showed a wide range(11.3-49.3 kPa).There were large differences in PAWC for dynamic FC(PAWC_(fc))and fixed FC at 10 kPa(PAWC10),33 kPa(PAWC33),and a mix of 10and 33 kPa(PAWC_(10,33))pressure heads depending on soil texture.Normally,the difference between PAWC at 10 kPa and h_(fc)(ΔPAWC_(10))was positive,whereas that between 33 kPa and h_(fc)(ΔPAWC_(33))was negative across all sites.Nevertheless,the estimation of PAWC assuming a fixed FC at 10 and 33 kPa pressures(i.e.,PAWC_(10,33))for sandy,clay,and silty soils reduced the difference between fixed and dynamic pressure PAWCs to<10% across the region.The estimation of PAWC was improved by incorporating the impact of subsoil constraints,such as high ESP,which was more pronounced for clay and silty soils.These findings demonstrate the inherent inconsistencies between static pressure and flux-based dynamic FC estimations in soils.Soil heterogeneity,intra-texture variability,subsoil constraints,and swell-shrink clays can have great impacts on the water retention capacity in response to dynamic and fixed pressure FC values.
基金“Agence de l’Environnement et de la Maitrise de l’Energie”(ADEME)“Agence Nationale pour la Recherche”(ANR)for their financial support of the STARTT programmeADEME for the financial support of the PHYTENER programme
文摘Accumulation of heavy metals in soils poses a potential risk to plant production, which is related to availability of the metals in soil. The phytoavailability of metals is usually evaluated using extracting solutions such as salts, acids or chelates. The purpose of this study was to identify the most significant soil parameters that can be used to predict the concentrations of acetic and citric acidextractable cadmium(Cd), lead(Pb) and zinc(Zn) in contaminated woody habitat topsoils. Multiple linear regression models were established using two analysis strategies and three sets of variables based on a dataset of 260 soil samples. The performance of these models was evaluated using statistical parameters. Cation exchange capacity, CaCO_3, organic matter, assimilated P, free Al oxide,sand and the total metal concentrations appeared to be the main soil parameters governing the solubility of Cd, Pb and Zn in acetic and citric acid solutions. The results strongly suggest that the metal solubility in extracting solutions is extractable concentrationdependent since models were overall improved by incorporating a change point. This change point detection method was a powerful tool for predicting extractable Cd, Pb and Zn. Suitable predictions of extractable Cd, Pb and Zn concentrations were obtained, with correlation coefficient(adjusted r) ranging from 0.80 to 0.99, given the high complexity of the woody habitat soils studied. Therefore,the predictive models can constitute a decision-making support tool for managing phytoremediation of contaminated soils, making recommendations to control the potential bioavailability of metals. The relationships between acetic and/or citric acid-extractable concentrations and the concentrations of metals into the aboveground parts of plants need to be predicted, in order to make their temporal monitoring easier.
基金funded by projects PID UNER 2223“Carbon capture and fixation as an environmental service of the Espinal forests”National Observatory of Land Degradation and Desertification of ArgentinaPD INTA I040“Design and implementation of a national system for degradation monitoring system at different scales for land degradation neutrality”.
文摘Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uniand multivariate (redundancy analysis) methods. Results The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50;p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. Conclusions The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.