期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees 被引量:19
1
作者 YanYan LIU YanMing GONG +1 位作者 Xin WANG YuKun HU 《Journal of Arid Land》 SCIE CSCD 2013年第4期480-487,共8页
Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studi... Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index. 展开更多
关键词 alpine grassland disturbance degree volume fractal dimension of soil particles species diversity
下载PDF
Spatial heterogeneity in soil particle size:does it affect the yield of plant communities with different species richness?
2
作者 Wei Xue Lin Huang Fei-Hai Yu 《Journal of Plant Ecology》 SCIE 2016年第5期608-615,共8页
Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower... Aims Soil heterogeneity is ubiquitous in many ecosystems.We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower richness.This is because there is niche differentiation among species and different species can complement each other and occupy a broader range of niches when plant species richness is high.However,no study has tested how soil particle heterogeneity affects the yield of plant communities,and whether such effects depend on the spatial scale of the heterogeneity and the species richness within the communities.Methods In a greenhouse experiment,we sowed seeds of four-species or eight-species mixtures in three heterogeneous treatments consisting of 32,8 or 2 patches of both small(1.5 mm)and large quartz(3.0 mm)particles arranged in a chessboard manner and one homogeneous treatment with an even mixture of small and large quartz particles.Important Findings Biomass production was significantly greater in the communities with high species richness than those with low species richness.However,soil particle heterogeneity or its interactions with patch scale or species richness did not significantly affect biomass production of the experimental communities.This work indicates that plant species richness may have a bigger impact on plant productivity than soil particle heterogeneity.Further studies should consider multiple sets of plant species during longer time periods to unravel the potential mechanisms of soil heterogeneity and its interactions with the impacts of species richness on community yield and species coexistence. 展开更多
关键词 diversity effect experimental communities environmental heterogeneity patch size soil particle heterogeneity spatial scale
原文传递
Transient infiltration tests in pyroclastic soils with double porosity
3
作者 Ciro SEPE Domenico CALCATERRA +6 位作者 Emilia DAMIANO Diego DI MARTIRE Roberto GRECO Lucia PAPPALARDO Massimo RAMONDINI Enza VITALE Giacomo RUSSO 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3327-3342,共16页
Fallout volcanic deposits of SommaVesuvius(Campania,southern Italy),characterized by the presence of layers with contrasting textural and hydraulic properties,are frequently affected by shallow landslides during rainw... Fallout volcanic deposits of SommaVesuvius(Campania,southern Italy),characterized by the presence of layers with contrasting textural and hydraulic properties,are frequently affected by shallow landslides during rainwater infiltration.The soils of the stratigraphic sequence present intraparticle pores,originated by the gases escaped during magma decompression in the volcanic conduit,thus are characterized by double porosity(i.e.,intraparticle and interparticle pores),which is expected to affect their hydraulic behaviour,and to play a key role in rainwater infiltration through layered deposits.To understand the effect of double porosity on the hydraulic behaviour of the involved soils,controlled experiments have been carried out in an infiltration column.The experimental apparatus is provided with newly designed non-invasive Time Domain Reflectometry(TDR)probes,not buried in the investigated soil layers so as to minimize disturbance to the flow,allowing water content measurement during vertical flow processes.Specifically,transient flow experiments are carried out through reconstituted specimens of black scoriae and grey pumices,both loose pyroclastic granular soils from fallout deposits of Somma-Vesuvius,featuring double porosity with different pore size distributions,that were estimated by X-ray tomography and Mercury Intrusion Porosimetry.The experimental results highlight the effects of the double porosity and clearly indicate the different behaviour of the two soils during wetting and drying processes,mainly related to the different dimensions of intraparticle pores. 展开更多
关键词 Double porosity soil Non-invasive TDR probes Vesiculated soil particles Pyroclastic soils X-ray tomography Mercury intrusion porosimetry
下载PDF
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land,China
4
作者 NAN Weige DONG Zhibao +2 位作者 ZHOU Zhengchao LI Qiang CHEN Guoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第1期14-28,共15页
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin... Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China. 展开更多
关键词 Sabina vulgaris plantation age soil physical and chemical properties soil particle size soil fertility vegetation restoration Mu Us Sandy Land
下载PDF
A Fractal Method of Estimating Soil Structure Changes Under Different Vegetations on Ziwuling Mountains of the Loess Plateau,China 被引量:13
5
作者 ZHAO Shi-wei SU Jing +3 位作者 YANG Yong-hui LIU Na-na WU Jin-shui SHANGGUAN Zhou-ping 《Agricultural Sciences in China》 CAS CSCD 2006年第7期530-538,共9页
Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension... Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension. 展开更多
关键词 soil fractal dimension soil particle soil aggregate vegetation type Ziwuling Mountains
下载PDF
Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes 被引量:1
6
作者 XU Lu ZHANG Dan +3 位作者 PROSHAD Ram CHEN Yu-lan HUANG Tian-fang UGURLU Aysenur 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1222-1234,共13页
Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfa... Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfall.In this study,the runoff,sediment yields,and effective/ultimate PSD were measured under two conventional tillage practices,downhill ridge tillage(DT)and plat tillage(PT)and three soil conservation practices,contour ridge tillage(CT),mulching with downhill ridge tillage(MDT),and mulching with contour ridge tillage(MCT)during 21 natural rainfall events in the lower Jinsha River.The results showed that(1)soil conservation practices had a significant effect on soil erosion.The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm)and sediment yield(0.01 to 3.19 t hm^(-2)).Compared with DT,the annual runoff depths and sediment yields of CT,MDT and MCT decreased by 12.24%-49.75%and 40.79%-88.30%,respectively.(2)Soil conservation practices can reduce the decomposition of aggregates in sediments.The ratios of effective and ultimate particle size(E/U)of siltand sand-sized particles of DT and PT plots were close to 1,indicating that they were transported as primary particles,however,values lower/greater than 1 subject to CT,MDT and MCT plots indicated they were transported as aggregates.The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3)The sediments of soil conservation practices were more selective than those of conventional tillage practices.For CT,MDT and MCT plots,the average enrichment ratios(ERs)of clay,silt and sand were 1.99,1.93 and 0.42,respectively,with enrichment of clay and silt and depletion of sand in sediments.However,the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil.These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment,and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China. 展开更多
关键词 Natural rainfall Runoff and sediment yield soil particle size distribution Enrichment ratio Purple soil
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
7
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
An experimental study on the influences of wind erosion on water erosion 被引量:2
8
作者 YANG Huimin GAO Yuan +3 位作者 LIN Degen ZOU Xueyong WANG Jing'ai SHI Peijun 《Journal of Arid Land》 SCIE CSCD 2017年第4期580-590,共11页
In semi-arid regions, complex erosion resulted from a combination of wind and water actions has led to a massive soil loss and a comprehensive understanding of its mechanism is the first step toward prevention of the ... In semi-arid regions, complex erosion resulted from a combination of wind and water actions has led to a massive soil loss and a comprehensive understanding of its mechanism is the first step toward prevention of the erosion. However, the mutual influences between wind erosion and water erosion have not been fully understood. This research used a wind tunnel and two rainfall simulators and simulated two rounds of alternations between wind erosion and water erosion(i.e., 1^(st) wind erosion–1^(st) water erosion and 2^(nd) wind erosion–2^(nd) water erosion) on three slopes(5°, 10°, and 15°) with six wind speeds(0, 9, 11, 13, 15, and 20 m/s) and five rainfall intensities(0, 30, 45, 60, and 75 mm/h). The objective was to analyze the influences of wind erosion on succeeding water erosion. Results showed that the effects of wind erosion on water erosion were not the same in the two rounds of tests. In the 1^(st) round of tests, wind erosion first restrained and then intensified water erosion mostly because the blocking effect of wind-sculpted micro-topography on surface flow was weakened with the increase in slope. In the 2^(nd) round of tests, wind erosion intensified water erosion on beds with no rills at gentle slopes and low rainfall intensities or with large-size rills at steep slopes and high rainfall intensities. Wind erosion restrained water erosion on beds with small rills at moderate slopes and moderate rainfall intensities. The effects were mainly related to the fine grain layer, rills and slope of the original bed in the 2^(nd) round of tests. The findings can deepen our understanding of complex erosion resulted from a combination of wind and water actions and provide scientific references to regional soil and water conservation. 展开更多
关键词 wind-water interaction sandy soil particle size surface roughness wind and water erosion
下载PDF
A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County
9
作者 nan ling dong zhibao +5 位作者 xiao weiqiang li chao xiao nan song shaopeng xiao fengjun du lingtong 《Journal of Arid Land》 SCIE CSCD 2018年第1期27-38,共12页
The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co... The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles. 展开更多
关键词 wind erosion rate wind tunnel eroded sediment soil particle size CROPLAND RANGELAND semi-arid region
下载PDF
Heterogeneous uptake of NO_2 on soils under variable temperature and relative humidity conditions 被引量:3
10
作者 Lei Wang Weigang Wang Maofa Ge 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第10期1759-1766,共8页
Heterogeneous reactions of nitrogen dioxide (NO2) on soils collected from Dalian (S 1) and Changsha (S2) were investigated over the relative humidity (RH) range of 5%-80% and temperature range of 278-328 K usi... Heterogeneous reactions of nitrogen dioxide (NO2) on soils collected from Dalian (S 1) and Changsha (S2) were investigated over the relative humidity (RH) range of 5%-80% and temperature range of 278-328 K using a horizontal coated-wall flow tube. The initial uptake coefficients of NO2 on S2 exhibited a decreasing trend from (10 ± 1.3) × 10-8 to (3.1 ± 0.5) x 10-8 with the relative humidity increasing from 5% to 80%. In the temperature effect studies, the initial uptake coefficients of S1 and S2 decreased from (10± 1.2) × 10-8 to (3.8 ± 0.5) × 10-8 and from (16± 2.2) × 10-8 to (3.8 ±0.4) × 10-8 when temperature increased from 278 to 288 K for S1 and from 278 to 308 K for S2, respectively. As the temperature continued to increase, the initial uptake coefficients of S1 and S2 returned to (7.9 ± 1.1)× 10-8 and (20 ± 3.1) × 10-8 at 313 and 328 K, respectively. This study shows that relative humidity could influence the uptake kinetics of NO2 on soil and temperature would impact the heterogeneous chemistry of NO2. 展开更多
关键词 heterogeneous reactions soil particles uptake coefficients temperature dependence relative humidity effect
原文传递
Degradation of the fungicide metalaxyl and its non-extractable residue formation in soil clay and silt fractions 被引量:3
11
作者 Roschni KALATHOOR Jens BOTTERWECK +2 位作者 Andreas SCHÄFFER Burkhard SCHMIDT Jan SCHWARZBAUER 《Pedosphere》 SCIE CAS CSCD 2021年第4期549-559,共11页
The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantiosele... The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantioselectivity in degradation and NER formation of the chiral fungicide metalaxyl in soil particle size fractions(silt and clay). Microbial and extracellular enzyme activities during these processes were monitored in incubation of silt and clay samples isolated from sterilized and non-sterilized soil samples collected from a long-term agricultural field experimental site in Ultuna, Sweden. The temporal influence on the fate of the fungicide was noted by short-term(10-d) and long-term(92-d) incubations. Besides the acquisition of quantitative data with gas chromatography-mass spectrometry(GC/MS), stereoselective analyses were performed with chiral GC/MS. Quantitative results pointed to a higher metabolism rate of the pesticide through microbial activity than through extracellular enzyme activity. This was also confirmed by the enantioselective depletion of R-metalaxyl and the subsequent formation of R-metalaxyl acid in microbially active samples from non-sterilized soil. The silt fraction containing a high amount of organic matter exhibited a significant hydrolyzable proportion of metalaxyl NERs that was releasable under alkaline conditions. On the contrary, the clay fraction showed an enhanced affinity for covalently bound residues. Based on our results, we recommend differentiating between reversibly and irreversibly bound proportions of pesticides in persistence and environmental risk assessment because the reversible fraction contained potentially bioavailable amounts of residues that may be released under natural conditions. 展开更多
关键词 chiral fungicide ENANTIOSELECTIVITY metalaxyl enantiomer non-extractable pesticide residues organo-mineral complex pesticide degradation extracellular enzymes soil particle size fractions
原文传递
Monitoring and predicting the soil water content in the deeper soil profile of Loess Plateau,China
12
作者 Aijuan Wang Baoyuan Liu +1 位作者 Zhiqiang Wang Gang Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2016年第1期6-11,共6页
Estimation of soil water content(SWC)in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones,as well as for soil and water conserv... Estimation of soil water content(SWC)in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones,as well as for soil and water conservation.Soil properties have a very important effect on SWC.This study aimed to analyze the influence of soil particle size on SWC,for the first time using soil particle size to estimate SWC in deep soil profiles.SWC was measured mainly in farmland,natural grasslands and plantations of Caragana from the surface to more than 20 m depth.The same soil samples were also tested for particle size.The results show that the soil desiccation is formed in the caragana forest in 3–18 m soil layers,but almost no formation in 18–24 m layers;water content of farmland and grassland is different in all soil profiles although they are both shallow rooted plants.Correlation analysis indicated that SWC could be well predicted by clay content and the close correlation between SWC and clay content yielded a coefficient of determination(R^(2))of 0.82 and 0.72,respectively,for farmland and grassland.After multiple regression analysis,a regression model was built using SWC,clay content and sand content data,giving R^(2)=0.66.The model provided reliable estimates of SWC profile based on textural class.This can assist in estimating water depletion by vegetation,by comparing moisture of farmland and grassland soils with that of plantation forests,and in selecting sustainable land use of arid land. 展开更多
关键词 Clay content Field capacity Sand content soil water content(SWC) soil particle size
原文传递
Unraveling the size distributions of surface properties for purple soil and yellow soil 被引量:2
13
作者 Ying Tang Hang Li +2 位作者 Xinmin Liu Hualing Zhu Rui Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期81-89,共9页
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of th... Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges(i.e. 〉 10, 1-10, 0.5-1, 0.2-0.5 and 〈 0.2 μm) for a purple soil(Entisol) and a yellow soil(Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction.We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles(〈 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles(〈 0.2 μm). Vermiculite,illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy.Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the 〈 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. 展开更多
关键词 particle size distribution soil colloids Surface charge number Specific surface area Clay minerals
原文传递
Modelling large deformation and soil–water–structure interaction with material point method:Briefing on MPM2017 conference 被引量:1
14
作者 Alexander Rohe Dongfang Liang 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第3期393-396,共4页
The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the fi... The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the first conference organised by the Anura3D MPM Research Community,following a series of international workshops and symposia previously held in The Netherlands,UK,Spain and Italy,as part of the European Commission FP7 Marie-Curie project MPM-DREDGE.We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics,and take this opportunity to announce that the 2nd conference,MPM2019,will be held in Cambridge,UK in January 2019. 展开更多
关键词 Material point method soil–water–structure interaction meshfree methods particle methods
原文传递
黄土溅蚀过程中土壤有效粒径分布和富集/损耗的临界粒径 被引量:2
15
作者 齐小倩 程西科 +5 位作者 刘俊娥 周正朝 王宁 申楠 马春艳 王占礼 《Journal of Geographical Sciences》 SCIE CSCD 2023年第10期2113-2130,共18页
Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion.To reveal the individual contributions of rainfall intensity and slope to splash erosion,and to dist... Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion.To reveal the individual contributions of rainfall intensity and slope to splash erosion,and to distinguish the enrichment ratio of each size and the critical size in splash,loessial soil collected on the Loess Plateau in May 2019 was tested under different rainfall intensities(60,84,108,132,156 mm h^(-1))and slopes(0°,5°,10°,15°,20°).The results demonstrated that 99%of splash mass was concentrated in 0–0.4 m.Rainfall intensity was the major factor for splash according to the raindrop generation mode by rainfall simulator nozzles.The contributions of rainfall intensity to splash erosion were 82.72%and 93.24%,respectively in upslope and downslope direction.The mass percentages of effective clay and effective silt were positively correlated with rainfall intensity,while the mass percentages of effective very fine sand and effective fine sand were negatively correlated with rainfall intensity.Opposite to effective very fine sand,the mass percentages of effective clay significantly decreased with increasing distance.Rainfall intensity had significant effects on enrichment ratios,positively for effective clay and effective silt and negatively for effective very fine sand and effective fine sand.The critical effective particle size in splash for loessial soil was 50μm. 展开更多
关键词 splash erosion loessial soil effective soil particles splash distance enrichment ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部