期刊文献+
共找到981篇文章
< 1 2 50 >
每页显示 20 50 100
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
1
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:1
2
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Changes of soil organic carbon and nitrogen in forage grass fields,citrus orchard and coniferous forests 被引量:8
3
作者 王效举 李法云 +1 位作者 范志平 熊在平 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期29-32,J002,共5页
Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ... Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong 展开更多
关键词 soil organic carbon soil organic nitrogen Dynamic change Land use Quantitative assessment
下载PDF
Characteristics of Soil Organic Carbon and Total Nitrogen in Rubber Plantations Soil at Different Age Stages in the Western Region of Hainan Island 被引量:17
4
作者 吴志祥 谢贵水 +2 位作者 陶忠良 周兆德 王旭 《Agricultural Science & Technology》 CAS 2010年第1期147-153,共7页
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to... [Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper). 展开更多
关键词 Different age stages of trees Rubber (Hevea brasiliensis) plantations soil organic carbon (SOC) soil total nitrogen (STN) Hainan Island
下载PDF
Forest management causes soil carbon loss by reducing particulate organic carbon in Guangxi, Southern China 被引量:1
5
作者 Xiaojie Li Qiufang Zhang +2 位作者 Jiguang Feng Demeng Jiang Biao Zhu 《Forest Ecosystems》 SCIE CSCD 2023年第1期73-81,共9页
Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to ... Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to forest management practices remains unclear.Methods: We sampled 0–10 cm mineral soil from three different management plantations and one protected forest in Guangxi, Southern China, to explore how forest management practices affect SOC through changing mineralassociated C(MAOC) and particulate organic C(POC), as well as fungal and bacterial necromass C.Results: Compared with the protected forest, SOC and POC in the abandoned, mixed and Eucalyptus plantations significantly decreased, but MAOC showed no significant change, indicating that the loss of SOC was mainly from decreased POC under forest management. Forest management also significantly reduced root biomass, soil extractable organic C, MNC, and total microbial biomass(measured by phospholipid fatty acid), but increased fungi-to-bacteria ratio(F:B) and soil peroxidase activity. Moreover, POC was positively correlated with root biomass, total microbial biomass and MNC, and negatively with F:B and peroxidase activity. These results suggested that root input and microbial properties together regulated soil POC dynamics during forest management.Conclusion: Overall, this study indicates that forest management intervention significantly decreases SOC by reducing POC in Guangxi, Southern China, and suggests that forest protection can help to sequester more soil C in forest ecosystems. 展开更多
关键词 soil organic carbon Forest management Mineral-associated organic carbon particulate organic carbon Microbial necromass carbon
下载PDF
Analysis on Variation of Soil Organic Carbon and Total Nitrogen Content and Carbon Storage in the Oasis Cotton Field of Manas River Valley
6
作者 雷军 雷子莹 +1 位作者 林海荣 赵瑞海 《Agricultural Science & Technology》 CAS 2014年第3期499-502,共4页
Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar... Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile. 展开更多
关键词 Oasis cotton field soil organic carbon Total nitrogen content soil or-ganic carbon storage
下载PDF
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:39
7
作者 YANG Zeng-ping ZHENG Sheng-xian +2 位作者 NIE Jun LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1772-1781,共10页
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie... In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases. 展开更多
关键词 green manure organic carbon reddish paddy soil total nitrogen water-stable aggregates
下载PDF
Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China 被引量:5
8
作者 BI Xu LI Bo +3 位作者 NAN Bo FAN Yao FU Qi ZHANG Xinshi 《Journal of Arid Land》 SCIE CSCD 2018年第4期612-627,共16页
Soil organic carbon (SOC) and soil total nitrogen (STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosyst... Soil organic carbon (SOC) and soil total nitrogen (STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosystem processes and global climate feedbacks. Grassland ecosystems of Funyun County in the southern foot of the Altay Mountains are characterized by complex topography, suggesting large variability in the spatial distribution of SOC and STN. However, there has been little investigation of SOC and STN on grasslands in arid regions with a mountain-basin structure. Therefore, we investigated the characteristics of SOC and STN in different grassland types in a mountain-basin system at the southern foot of the Altai Mountains, north of the Junggar Basin in China, and explored their potential influencing factors and relationships with meteorological factors and soil properties. We found that the concentrations and storages of SOC and STN varied significantly with grassland type, and showed a decreasing trend along a decreasing elevation gradient in alpine meadow, mountain meadow, temperate typical steppe, temperate steppe desert, and temperate steppe desert. In addition, the SOC and STN concentrations decreased with depth, except in the temperate desert steppe. According to Pearson's correlation values and redundancy analysis, the mean annual precipitation, soil moisture content and soil available N concentration were significantly positively correlated with the SOC and STN concentrations. In contrast, the mean annual temperature, pH, and soil bulk density were significantly and negatively correlated with the SOC and STN concentrations. The mean annual precipitation and mean annual temperature were the primary factors related to the SOC and STN concentrations. The distributions of the SOC and STN concentrations were highly regulated by the elevation-induced differences in meteorological factors. Mean annual precipitation and mean annual temperature together explained 97.85% and 98.38% of the overall variations in the SOC and STN concentrations, respectively, at soil depth of 0-40 cm, with precipitation making the greatest contribution. Our results provide a basis for estimating and predicting SOC and STN concentrations in grasslands in arid regions with a mountain-basin structure. 展开更多
关键词 mountain-basirl system grassland types soil organic carbon soil total nitrogen meteorological factors soil properties
下载PDF
^137Cs tracing dynamics of soil erosion,organic carbon,and total nitrogen in terraced fields and forestland in the Middle Mountains of Nepal 被引量:5
9
作者 SU Zheng-an XIONG Dong-hong +4 位作者 DENG Wei DONG Yi-fan MA Jing PADMA C Poudel GURUNG B Sher 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1829-1839,共11页
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil ... The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137 Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen(TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137 Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2(1 Bq(i.e., one Becquerel) is equal to 1 disintegration per second(1 dps)). For each terrace, the 137 Cs inventory generally increased fromupper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137 Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces(lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatialvariation in soil erosion was similar to the "standard" water erosion model. Soil organic carbon(SOC) and TN inventories showed similar spatial patterns to the 137 Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction(clay sized) and 137 Cs inventories in terraced fields, while different patterns could be found between 137 Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137 Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal. 展开更多
关键词 Nepal 137Cs inventory soil erosion/deposition soil organic carbon Total nitrogen
下载PDF
Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes 被引量:4
10
作者 Renming Jia Xinyue Mu +6 位作者 Min Chen Jing Zhu Bo Wang Xiaopeng Li A S Astakhov Minfang Zheng Yusheng Qiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第9期96-108,共13页
The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial... The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial variability and origin of POM.Theδ13CPOC values were in the range of−29.5‰to−17.5‰with an average of−25.9‰±2.0‰,and theδ15NPN values ranged from 3.9‰to 13.1‰with an average of 8.0‰±1.6‰.The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf,while theδ13C andδ15N values were just the opposite.Abnormally low C/N ratios(<4),lowδ13CPOC(almost−28‰)and highδ15NPN(>10‰)values were observed in the Wrangel Island polynya,which was attributed to the early bloom of small phytoplankton.The contributions of terrestrial POM,bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model.The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward,indicating the influence of Russian rivers.The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward,suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf.The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery.A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed,indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM,the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves. 展开更多
关键词 particulate organic matter carbon isotope nitrogen isotope Chukchi Shelf East Siberian Shelf POLYNYA
下载PDF
Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards 被引量:7
11
作者 Shunfeng Ge Haigang Xu +1 位作者 Mengmeng Ji Yuanmao Jiang 《Open Journal of Soil Science》 2013年第5期213-217,共5页
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb... Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio. 展开更多
关键词 CHINESE APPLE ORCHARD soil organic carbon Total nitrogen C/N Ratio
下载PDF
Losses of Soil Organic Carbon and Nitrogen and Their Mechanisms in the Desertification Process of Sandy Farmlands inHorqin Sandy Land 被引量:3
12
作者 SU Yong-zhong and ZHAO Ha-lin(Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000 , P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2003年第8期890-897,共8页
Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertifi... Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertified farmlands)were examined to quantitatively elucidate losses of carbon and nitrogen and its mechanisms in the desertification process. Particle size fractions(2 -0.1 mm, 0.1 - 0.05 mm, <0.05 mm)were obtained by granulometric wet sieving from 30 sandy soils(0 - 15cm depth)of different desertified extent. It was shown that soil physical stability index(St)in most severe desertified farmlands was 5 -7% and St in other farmlands was less than 5 %, which contributed to very low soil organic matter content. This was the intrinsic cause that sandy farmlands in Horqin sandy land was subject to risk of desertification. Desertification resulted in considerable losses of SOC and N. Regression analysis indicated that SOC and N content reduced 0.169 g kg-1 and 0.0215 g kg-1 respectively with one percent loss of soil silt and clay content. Losses of SOC and N were mostly the removal of fine particle size fractions(silt and clay, and a less extent very fine sand)from the farmlands by wind erosion, which were rich in organic matter and nutrients, as well as the depletion of organic C and N associated with coarse particles(>0. 05 mm)in desertification process. The concentrations of C and N associated with sand(2 - 0.1 mm and 0.1 - 0.05 mm)significantly decreased with increase of desertified extent. Silt and clay associated C and N concentrations, however, were less changed, and in contrast, were higher in soils under most severe desertified extent than in soils under potential and severe desertified extent. The percentage of distribution in sand(>0.05 mm)associated C and N significantly increased with increase of desertified extent, suggesting that stability of SOC decreased in the desertification process. 展开更多
关键词 Farmland desertification soil organic carbon Total nitrogen Mechanisms of losses
下载PDF
Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system 被引量:2
13
作者 Muhammad QASWAR LI Dong-chu +10 位作者 HUANG Jing HAN Tian-fu Waqas AHMED Sehrish ALI Muhammad Numan KHAN Zulqarnain Haider KHAN XU Yong-mei LI Qian ZHANG Hui-min WANG Bo-ren Ahmad TAUQEER 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第3期826-839,共14页
Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up... Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up to 100 cm)and their relationships with crop productivity under the influence of long-term(since 1990)fertilization in the wheat-maize cropping system.Treatments included CK(control),NP(inorganic N and phosphorus(P)fertilizers),NPK(inorganic N,P and potassium fertilizers),NPKM(NPK plus manure),and M(manure).Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.C and N contents were measured at five different depths in 2001 and 2009.The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer(NP and NPK)treatments.The average yield between 2001 and 2009 under the NP,NPK,NPKM,and M treatments(compared with the CK treatment)increased by 38,115,383,and 381%,respectively,for wheat and 348,891,2738,and 1845%,respectively,for maize.Different long-term fertilization treatments significantly changed coarse free particulate(cf POC),fine free particulate(ff POC),intramicroaggregate particulate(i POC),and mineral-associated(m SOC)organic carbon fractions.In the experimental years of 2001 and 2009,soil fractions occurred in the following order for all treatments:m SOC>cf POC>i POC>ff POC.All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.Compared to the inorganic fertilization treatments,manure input enhanced the stocks of SOC and total N in the surface layer(0–20 cm)but decreased SOC and N in the deep soil layer(80–100 cm).This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients,especially N,compared to inorganic fertilization treatments.The findings provide opportunities for understanding deep soil C and N dynamics,which could help mitigate climate change impact on agricultural production and maintain soil health. 展开更多
关键词 carbon stock nitrogen stock carbon fraction soil profile organic amendments long-term experiment
下载PDF
Effects of degradation succession of alpine wetland on soil organic carbon and total nitrogen in the Yellow River source zone,west China 被引量:2
14
作者 LIN Chun-ying LI Xi-lai +8 位作者 ZHANG Jing SUN Hua-fang ZHANG Juan HAN Hui-bang WANG Qi-hua MA Cheng-biao LI Cheng-yi ZHANG Yu-xing MA Xue-qian 《Journal of Mountain Science》 SCIE CSCD 2021年第3期694-705,共12页
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)an... Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland. 展开更多
关键词 Degradation succession soil organic carbon(SOC) Total nitrogen(TN) soil water content(SWC) MICROTOPOGRAPHY soil depth
下载PDF
Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China 被引量:6
15
作者 WANG Junqiang LIU Lichao +3 位作者 QIU Xiaoqing WEI Yujie LI Yanrong SHI Zhiguo 《Journal of Arid Land》 SCIE CSCD 2016年第3期350-363,共14页
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an... Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term. 展开更多
关键词 aggregate stability water-stable aggregates agricultural abandonment soil organic carbon total nitrogen northwestern China
下载PDF
Characteristics of soil organic carbon andtotal nitrogen storages for differentland-use types in Central Yunnan Plateau 被引量:1
16
作者 SHEN Fangyuan TUO Yunfei +4 位作者 WANG Qian WANG Fei ZHENG Yang DU Wenjuan XIANG Ping 《排灌机械工程学报》 CSCD 北大核心 2022年第5期519-528,共10页
Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunh... Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation. 展开更多
关键词 soil organic carbon storage soil total nitrogen storage stratification ratio land-use types Central Yunnan Plateau
下载PDF
Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems 被引量:1
17
作者 Maruf Kajogbola Adebayo Adeboye Abdullahi Bala +3 位作者 Akim Oserhien Osunde Anthony Ozoemenam Uzoma Ayo Joshua Odofin Baba Abubakar Lawal 《Agricultural Sciences》 2011年第1期34-40,共7页
Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivati... Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils. 展开更多
关键词 AGROECOSYSTEMS MICROBIAL BIOMASS soil organic carbon soil Total nitrogen TROPICAL
下载PDF
Changes in soil organic carbon,nitrogen and sulphur along a slope gradient in apple orchard soils of Kashmir Himalaya
18
作者 Javaid M DAD Lotfollah ABDOLLAHI 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2377-2387,共11页
Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation ... Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation to topographical variables are of great interest.In this study,the variability of SOC,TN and S content was evaluated in apple orchard soils of Kashmir region,at three depths(D1:0-10,D2:10-20,and D3:20-30 cm)on slope gradient i.e.:flat,medium,and high.With an increase in slope,a significant decrease of SOC and TN was observed,with concentration of SOC and TN recorded highest(14.3±2.06 g kg-1&0.97±0.35 g kg-1)in flat slope orchards and lowest(9.6±2.07 g kg-1&0.84±0.41 g kg-1)in high slope orchards.On stock basis,the values recorded for flat,medium,and high slope orchards,for SOC and TN were 54.62±4.24 Mg ha-1&0.38±0.06 Mg ha-1,44.13±5.11 Mg ha-1&0.32±0.09 Mg ha-1,and 38.73±5.94 Mg ha-1&0.28±0.10,respectively.The differences for S concentration and stocks were modest,with flat(0.21±0.15 mg kg-1&0.09±0.0.003 Mg ha-1)>high(0.16±0.07 mg kg-1&0.06±0.007 Mg ha-1)>medium(0.12±0.04 mg kg-1&0.075±0.009 Mg ha-1).Across slopes,SOC,TN and S decreased with increasing soil depth,suggesting clear downward trend.Overall,SOC and TN increased with the increase of altitude,precipitation and clay content while its relationship with soil acidity and soil bulk density was negative.The findings may provide scientific basis to structure agricultural development plans or prioritize regions for soil conservation efforts. 展开更多
关键词 Apple orchards SLOPE soil organic carbon SULPHUR Total nitrogen soil bulk density
下载PDF
Relations between the Underground Biomass and Soil Organic Carbon and Nitrogen of the Alpine Meadow at the Eastern Margin of the Qinghai-Tibet Plateau
19
作者 ZHANG Hong GAO Linan 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期324-330,共7页
This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution o... This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution of the content of soil carbon and nitrogen, the connection between the biomass and the content of carbon and nitrogen. The studies show that underground biomass in the herb layer of upland meadow is more than that in the terrace meadow, while underground biomass in the upland shrubland is the most. The vertical distribution of underground biomass of each type is obvious as in shape of"T". As to the distribution of the content of soil organic carbon in the three sample grounds, it showed that the deeper the soil the less the content of soil organic carbon. In May, unlike at terrace meadow, the underground biomass and the content of soil organic carbon in positive proportion, such revelation at upland meadow and upland shrubland is not apparent. In July, at upland meadow and terrace meadow the underground biomass and the content of soil total nitrogen in positive proportion, such revelation at upland shrubland is not apparent either. 展开更多
关键词 alpine meadow underground biomass soil organic carbon soil total nitrogen soil avail nitrogen
下载PDF
Effects of Nitrogen Treatments on Organic Carbon Mineralization of Citrus Orchard Soil 被引量:2
20
作者 翁伯琦 王峰 +4 位作者 王义祥 江福英 吴志丹 尤志明 张文锦 《Agricultural Science & Technology》 CAS 2012年第8期1702-1707,共6页
[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carb... [Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carbon circulation model for orchard eco-system. [Method] The effects of nitrogen treatments on soil organic carbon mineralization of citrus orchard soil were investigated under 10, 20, 30 ℃ by laboratory simulated experiment. [Result] The mineralization rate decreased quickly at the be- ginning of the experiment but remained stable at the late period under three temper- ature treatments. The amounts of CO2 ranged from 1 328.25-2 219.42 mg/kg under three temperature condition, and the amount of soil organic carbon mineralization of 100 mg/kg (N4) treatment was the greatest, while that of CK was the lowest. High level nitrogen treatment (N4 and N3) were significant higher than the lower level nitro- gen treatment (N2 and N1). The soil organic carbon mineralization rate increased with the temperature from 10 to 30℃. The dependence of soil carbon mineralization to temperature (Q10) was different under different nitrogen treatments that the Qlo value of N2 treatment was the lowest while that of the N4 treatment was the greatest. The soil organic carbon mineralization in Citrus orange orchard soil was affected significantly by high level nitrogen treatment, but with no significance under lower nitrogen treatment. [Conclusion] The dependence of soil carbon mineralization to temperature (Q10) increased with the increasing nitrogen input. The combination of nitrogen with temperature may increase the CO2 emission from Citrus orchard soil. 展开更多
关键词 Citrus orchard soil organic carbon mineralization nitrogen treatment TEMPERATURE
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部