期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Vertical and temporal distribution of nitrogen and phosphorus and relationship with their influencing factors in aquatic-terrestrial ecotone:a case study in Taihu Lake,China 被引量:5
1
作者 YANG Hong-jun SHEN Zhe-min ZHU Song-he WANG Wen-hua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期689-695,共7页
Vertical and temporal distributions of N and P in soil solution in aquatic-terrestrial ecotone (ATE) of Taihu Lake were investigated, and the relations among N, P, ORP (oxidation reduction potential), TOC, root sy... Vertical and temporal distributions of N and P in soil solution in aquatic-terrestrial ecotone (ATE) of Taihu Lake were investigated, and the relations among N, P, ORP (oxidation reduction potential), TOC, root system biomass and microorganism were studied. As a whole, significant declines in TN, NO3^--N, DON (dissolved organic nitrogen) and TP concentration in soil solution have occurred with increase of the depth, and reached their minima at 60 cm depth, except for NH4^+-N, which increased with depth. The concentration of TP increased gradually from spring to winter in the topsoil, the maximum 0.08 mg/L presented in the winter while the minimum 0.03 mg/L in spring. In the deeper layer, the concentration value of TP fluctuated little. As for the NO3^--N, its seasonal variation was significant at 20 cm depth, its concentration increased gradually from spring to autumn, and decreased markedly in winter. Vertical and temporal distribution of DON is contrary to that of NO3^--N. The results also show that the variation of N and P in the percolate between adjacent layers is obviously different. The vertical variation ofTN, TP, NO3^--N, NH4^+-N and DON is significant, of which the variation coefficient of NO3^--N along the depth reaches 100.23%, the highest; while the variation coefficient of DON is 41.14%, the smallest. The results of correlation analysis show that the concentration of nitrogen and phosphorus correlate significantly with TOC, ORP, root biomass and counts of nitrifying bacteria. Most nutrients altered much from 20 to 40 cm along the depth. However, DON changed more between 60 and 80 cm. Results show that soil of 0-60 cm depth is active rhizoplane, with strong capability to remove the nitrogen and phosphorus in ATE. It may suggest that there exists the optimum ecological efficiency in the depth of above 60 cm in reed wetland. This will be very significant for ecological restoration and reestablishment. 展开更多
关键词 aquatic-terrestrial ecotone (ATE) soil percolate vertical and temporal distribution coefficient of variation ecological efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部