In China’s major rice(Oryza sativa L.)production regions,the traditional fertilization modes are challenged by the continued decrease in manure and increase in mineral fertilizer.However,limited information exists on...In China’s major rice(Oryza sativa L.)production regions,the traditional fertilization modes are challenged by the continued decrease in manure and increase in mineral fertilizer.However,limited information exists on the influences of long-term fertilizer management on soil organic carbon(SOC)and soil physical properties under the intensive rice production system in southern China.The objective of this study was to characterize the changes of soil physical properties as related to mineral fertilizer,crop residues,and manure application based on a long-term field experiment.The experiment,initiated in 1986,has five treatments:unfertilized,mineral fertilizer alone,rice residues plus mineral fertilizer,low manure rate plus mineral fertilizer,and high manure rate plus mineral fertilizer.The cropping system consists of barley(Hordaum vulgare L.),early rice,and late rice,three crops in a year.In May 2006,after barley harvest,soil samples were collected from the 0~10 cm and 10~20 cm layers to determine SOC concentration,aggregate size distribution,bulk density(rb),saturated hydraulic conductivity(Ks),and soil water characteristic curves(SWCC).The results indicated that manure significantly reducedrb,increased SOC concentration,soil aggregation,Ks,transmission and storage porosity,as well as water retention capacity.Combined application of crop residue and mineral fertilizer also improved soil physical properties,but the improvement by mineral fertilizer alone was limited.Correlation analysis demonstrated that S,the slope of the SWCC at its inflection point,was closely associated with the selected physical parameters,suggesting S was an effective parameter for soil physical quality evaluation.Nevertheless,in applying the S-theory,a unified approach to define the residual water content should be considered.展开更多
Changes in soil quality of sugarcane plantation as a result of changes in land management can not be measured directly, but must be demonstrated by measuring the change in the properties of the ecosystem as an indicat...Changes in soil quality of sugarcane plantation as a result of changes in land management can not be measured directly, but must be demonstrated by measuring the change in the properties of the ecosystem as an indicator. This research aimed to study the effect of the addition of various quality and quantity of organic matter on soil biology (earthworms) and physical quality (aggregate stability, macroporosity and infiltration rate). There were i 5 treatment combinations tested. The first factor is the type of organic matter: (1) cattle manure (CM), (2) filter cake (FC), (3) sugarcane trash (ST), (4) a mixture ofCM + FC and (5) a mixture of CM + ST. The second factor is the application dose of organic matter, which consists of three levels-5, l0 and 15 Mg/ha. The treatments were arranged in a factorial randomized block design with three replicates and one control treatment (without organic matter input). The result of this research showed that the highest population density of earthworms was found in the treatment of ST (78 individuals/m2) and a mixture of CM + ST (84 individuals/m2). The type of organic matter with C/N ratio ranged from 15.5 to 34.7 and cellulose content in 33.3%-40.1% gave better growth of earthworm. The effect of increase in earthworm growth on soil physical improvement is more apparent in the treatment of mixture of low quality and high quality organic matter. The increase of earthworm density and biomass enhanced soil macroporosity (from r = 0.683 to r = 0.606) and infiltration rate (from r = 0.669 to r = 0.756). The results of this study suggest a mixture of CM + ST or ST alone as organic matters, which is recommended to improve soil physical and biological quality of sugarcane land, with the dose application ranged from 10 Mg/ha to 15 Mg/ha.展开更多
Whether biochar produced as a by-product of energy generation from the papermill industry,and often disposed in landfills,can be gainfully applied to commercial croplands has not been investigated.The objective of thi...Whether biochar produced as a by-product of energy generation from the papermill industry,and often disposed in landfills,can be gainfully applied to commercial croplands has not been investigated.The objective of this study was to investigate the physical and hydraulic properties of soils in commercial cotton fields managed as no-till systems following repeated applications of biochar generated as a waste of a papermill plant.Undisturbed cores and disturbed soil samples were collected from 0-5 and 5-10 cm layers from five commercial no-till fields in Mississippi,USA that received 6.7 Mg ha^(−1) year^(−1) biochar for 0,2,3,5 or 10 years.A number of physical,hydraulic,and chemical properties of these samples were measured in the lab.The results showed that biochar reduced the degree of soil compactness and increased soil aggregation and structural stability index.The findings were particularly apparent for the 10 years of consecutive application,which increased soil aggregate stability by up to 67%,reduced bulk density from 1.40 to 1.26 g cm^(−3),and reduced degree of compactness from 73.2%to 62.8%.Biochar increased soil porosity but much of this increase(55%)occurred for small pores(<0.5μm)with little effect on storage pores(0.5-50μm)or transmission pores(>50μm).Consequently,biochar increased soil field capacity by up to 26%,but PAW increased by only 17%.Biochar significantly increased soil physical quality index score in the 0-5 cm layer from 0.16 to 0.26 and the increase was positively correlated with the number of years of application.The results suggest biochar generated as a byproduct of papermill could be land-applied in real-world crop production systems to improve soil health as an alternative to disposal in landfills.展开更多
Water scarcity threatens global food security and agricultural systems are challenged to achieve high yields while optimizing water usage.Water deficit can be accentuated by soil physical degradation,which also trigge...Water scarcity threatens global food security and agricultural systems are challenged to achieve high yields while optimizing water usage.Water deficit can be accentuated by soil physical degradation,which also triggers water losses through runoff and consequently soil erosion.Although soil health in cropping systems within the Brazilian Cerrado biome have been surveyed throughout the years,information about soil erosion impacts and its mitigation are still not well understood;especially concerning the role of cropping system diversification and its effects on crop yield.Thus,the aim of this study was to assess whether ecological intensification of cropping systems-inclusion of a consorted perennial grass and crop rotation-could promote soil coverage and consequently decrease water erosion and soil,water,and nutrient losses.This work studied the effects of crop rotation and consorted Brachiaria,along with different levels of investment in fertilization on soil physical quality and on soil,water,and nutrient losses,and crop yields.Results proved that soybean monoculture(SS)is a system of low sustainability even under no-till in the Brazilian Cerrado conditions.It exhibited high susceptibility to soil,water,and nutrient losses,causing low crop yields.Our results showed that water losses in SS cropping system were approximately 10%of the total annual rainfall,and total K losses would require an additional 35%of K application.Conversely,ecological intensification of cropping systems resulted in enhanced soil environmental and agronomic functions,increased grain yield,and promoted soil and water conservation:high soil cover rate,and low soil,water and nutrient losses.Ecological intensification proved to be an adequate practice to boost crop resilience to water deficit in the Brazilian Cerrado.展开更多
Soil physical quality(SPQ)assessment is an important part in the evaluation of soil use,management,and conservation.It can be assessed using several physical properties,hydraulic indices,and functions.Soils from tropi...Soil physical quality(SPQ)assessment is an important part in the evaluation of soil use,management,and conservation.It can be assessed using several physical properties,hydraulic indices,and functions.Soils from tropical and temperate regions represent different physical behaviors,and the quantification of their physical properties is important to support soil evaluation and modelling.The objective of this study was to evaluate the SPQ in a subtropical field under maize crop cultivation according to its physical properties,hydraulic indices,and functions in an attempt to infer the spatial variability and to determine the behavior of soil physical structure across a spatial domain.Commonly used soil key physical variables,such as texture,bulk density,total porosity,saturated hydraulic conductivity,and organic carbon content,were measured in a regular grid with a soil sampling density of 30 points per hectare,covering an area of0.5 ha.Saturated hydraulic conductivity varied strongly between subsamples and in the field,suggesting the heterogeneity of the soil structure regarding water drainage.The physical variables were combined with other indicators,which were based on the soil water retention curve and the pore size distribution(PSD)function.Correlation analysis was performed to verify the relationship between the measured and calculated variables,and some strong linear correlations were revealed,such as between aeration energy index and microporosity(r=0.608)and water retention energy index with microporosity(r=0.532)and with bulk density(r=0.541).For most sampled locations,the shape and location parameters of PSD showed results outside of the optimum ranges,whereas the hydraulic energy indices and cumulative hydraulic energy functions presented values that were similar to those found for some tropical soils described in the literature.The spatial variability of these indices was described using semivariograms and kriged maps,indicating the variability of the SPQ in this field.展开更多
基金the National Science and Technology Supporting Programs of China under Grants No 2006BAD02A15 and 2006BAD15B02.
文摘In China’s major rice(Oryza sativa L.)production regions,the traditional fertilization modes are challenged by the continued decrease in manure and increase in mineral fertilizer.However,limited information exists on the influences of long-term fertilizer management on soil organic carbon(SOC)and soil physical properties under the intensive rice production system in southern China.The objective of this study was to characterize the changes of soil physical properties as related to mineral fertilizer,crop residues,and manure application based on a long-term field experiment.The experiment,initiated in 1986,has five treatments:unfertilized,mineral fertilizer alone,rice residues plus mineral fertilizer,low manure rate plus mineral fertilizer,and high manure rate plus mineral fertilizer.The cropping system consists of barley(Hordaum vulgare L.),early rice,and late rice,three crops in a year.In May 2006,after barley harvest,soil samples were collected from the 0~10 cm and 10~20 cm layers to determine SOC concentration,aggregate size distribution,bulk density(rb),saturated hydraulic conductivity(Ks),and soil water characteristic curves(SWCC).The results indicated that manure significantly reducedrb,increased SOC concentration,soil aggregation,Ks,transmission and storage porosity,as well as water retention capacity.Combined application of crop residue and mineral fertilizer also improved soil physical properties,but the improvement by mineral fertilizer alone was limited.Correlation analysis demonstrated that S,the slope of the SWCC at its inflection point,was closely associated with the selected physical parameters,suggesting S was an effective parameter for soil physical quality evaluation.Nevertheless,in applying the S-theory,a unified approach to define the residual water content should be considered.
文摘Changes in soil quality of sugarcane plantation as a result of changes in land management can not be measured directly, but must be demonstrated by measuring the change in the properties of the ecosystem as an indicator. This research aimed to study the effect of the addition of various quality and quantity of organic matter on soil biology (earthworms) and physical quality (aggregate stability, macroporosity and infiltration rate). There were i 5 treatment combinations tested. The first factor is the type of organic matter: (1) cattle manure (CM), (2) filter cake (FC), (3) sugarcane trash (ST), (4) a mixture ofCM + FC and (5) a mixture of CM + ST. The second factor is the application dose of organic matter, which consists of three levels-5, l0 and 15 Mg/ha. The treatments were arranged in a factorial randomized block design with three replicates and one control treatment (without organic matter input). The result of this research showed that the highest population density of earthworms was found in the treatment of ST (78 individuals/m2) and a mixture of CM + ST (84 individuals/m2). The type of organic matter with C/N ratio ranged from 15.5 to 34.7 and cellulose content in 33.3%-40.1% gave better growth of earthworm. The effect of increase in earthworm growth on soil physical improvement is more apparent in the treatment of mixture of low quality and high quality organic matter. The increase of earthworm density and biomass enhanced soil macroporosity (from r = 0.683 to r = 0.606) and infiltration rate (from r = 0.669 to r = 0.756). The results of this study suggest a mixture of CM + ST or ST alone as organic matters, which is recommended to improve soil physical and biological quality of sugarcane land, with the dose application ranged from 10 Mg/ha to 15 Mg/ha.
基金National Natural Science Foundation of China(No.42207381)China Scholarship Council(No.201806350218).
文摘Whether biochar produced as a by-product of energy generation from the papermill industry,and often disposed in landfills,can be gainfully applied to commercial croplands has not been investigated.The objective of this study was to investigate the physical and hydraulic properties of soils in commercial cotton fields managed as no-till systems following repeated applications of biochar generated as a waste of a papermill plant.Undisturbed cores and disturbed soil samples were collected from 0-5 and 5-10 cm layers from five commercial no-till fields in Mississippi,USA that received 6.7 Mg ha^(−1) year^(−1) biochar for 0,2,3,5 or 10 years.A number of physical,hydraulic,and chemical properties of these samples were measured in the lab.The results showed that biochar reduced the degree of soil compactness and increased soil aggregation and structural stability index.The findings were particularly apparent for the 10 years of consecutive application,which increased soil aggregate stability by up to 67%,reduced bulk density from 1.40 to 1.26 g cm^(−3),and reduced degree of compactness from 73.2%to 62.8%.Biochar increased soil porosity but much of this increase(55%)occurred for small pores(<0.5μm)with little effect on storage pores(0.5-50μm)or transmission pores(>50μm).Consequently,biochar increased soil field capacity by up to 26%,but PAW increased by only 17%.Biochar significantly increased soil physical quality index score in the 0-5 cm layer from 0.16 to 0.26 and the increase was positively correlated with the number of years of application.The results suggest biochar generated as a byproduct of papermill could be land-applied in real-world crop production systems to improve soil health as an alternative to disposal in landfills.
文摘Water scarcity threatens global food security and agricultural systems are challenged to achieve high yields while optimizing water usage.Water deficit can be accentuated by soil physical degradation,which also triggers water losses through runoff and consequently soil erosion.Although soil health in cropping systems within the Brazilian Cerrado biome have been surveyed throughout the years,information about soil erosion impacts and its mitigation are still not well understood;especially concerning the role of cropping system diversification and its effects on crop yield.Thus,the aim of this study was to assess whether ecological intensification of cropping systems-inclusion of a consorted perennial grass and crop rotation-could promote soil coverage and consequently decrease water erosion and soil,water,and nutrient losses.This work studied the effects of crop rotation and consorted Brachiaria,along with different levels of investment in fertilization on soil physical quality and on soil,water,and nutrient losses,and crop yields.Results proved that soybean monoculture(SS)is a system of low sustainability even under no-till in the Brazilian Cerrado conditions.It exhibited high susceptibility to soil,water,and nutrient losses,causing low crop yields.Our results showed that water losses in SS cropping system were approximately 10%of the total annual rainfall,and total K losses would require an additional 35%of K application.Conversely,ecological intensification of cropping systems resulted in enhanced soil environmental and agronomic functions,increased grain yield,and promoted soil and water conservation:high soil cover rate,and low soil,water and nutrient losses.Ecological intensification proved to be an adequate practice to boost crop resilience to water deficit in the Brazilian Cerrado.
基金financed in part by the Coordination of Improvement of Higher Education Personnel(CAPES),Brazil(No.001)。
文摘Soil physical quality(SPQ)assessment is an important part in the evaluation of soil use,management,and conservation.It can be assessed using several physical properties,hydraulic indices,and functions.Soils from tropical and temperate regions represent different physical behaviors,and the quantification of their physical properties is important to support soil evaluation and modelling.The objective of this study was to evaluate the SPQ in a subtropical field under maize crop cultivation according to its physical properties,hydraulic indices,and functions in an attempt to infer the spatial variability and to determine the behavior of soil physical structure across a spatial domain.Commonly used soil key physical variables,such as texture,bulk density,total porosity,saturated hydraulic conductivity,and organic carbon content,were measured in a regular grid with a soil sampling density of 30 points per hectare,covering an area of0.5 ha.Saturated hydraulic conductivity varied strongly between subsamples and in the field,suggesting the heterogeneity of the soil structure regarding water drainage.The physical variables were combined with other indicators,which were based on the soil water retention curve and the pore size distribution(PSD)function.Correlation analysis was performed to verify the relationship between the measured and calculated variables,and some strong linear correlations were revealed,such as between aeration energy index and microporosity(r=0.608)and water retention energy index with microporosity(r=0.532)and with bulk density(r=0.541).For most sampled locations,the shape and location parameters of PSD showed results outside of the optimum ranges,whereas the hydraulic energy indices and cumulative hydraulic energy functions presented values that were similar to those found for some tropical soils described in the literature.The spatial variability of these indices was described using semivariograms and kriged maps,indicating the variability of the SPQ in this field.