In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Co...In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Considering that the words describing soil–environment relationships are often mixed with unrelated words, the first step is to extract the needed words and organize them in a structured way. This paper applies natural language processing(NLP) techniques to automatically extract and structure information from soil survey reports regarding soil–environment relationships. The method includes two steps:(1) construction of a knowledge frame and(2) information extraction using either a rule-based method or a statistic-based method for different types of information. For uniformly written text information, the rule-based approach was used to extract information. These types of variables include slope, elevation, accumulated temperature, annual mean temperature, annual precipitation, and frost-free period. For information contained in text written in diverse styles, the statistic-based method was adopted. These types of variables include landform and parent material. The soil species of China soil survey reports were selected as the experimental dataset. Precision(P), recall(R), and F1-measure(F1) were used to evaluate the performances of the method. For the rule-based method, the P values were 1, the R values were above 92%, and the F1 values were above 96% for all the involved variables. For the method based on the conditional random fields(CRFs), the P, R and F1 values for the parent material were, respectively, 84.15, 83.13, and 83.64%; the values for landform were 88.33, 76.81, and 82.17%, respectively. To explore the impact of text types on the performance of the CRFs-based method, CRFs models were trained and validated separately by the descriptive texts of soil types and typical profiles. For parent material, the maximum F1 value for the descriptive text of soil types was 90.7%, while the maximum F1 value for the descriptive text of soil profiles was only 75%. For landform, the maximum F1 value for the descriptive text of soil types was 85.33%, which was similar to that of the descriptive text of soil profiles(i.e., 85.71%). These results suggest that NLP techniques are effective for the extraction and structuration of soil–environment relationship information from a text data source.展开更多
Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take ...Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take all polygons of the same map unit on a map as a whole to extract the soil–environment relationship.Such approach ignores the difference in the environmental conditions represented by individual soil polygons of the same map unit.This paper proposes a method of mining soil–environment relationships from individual soil polygons to update conventional soil maps.The proposed method consists of three major steps.Firstly,the soil–environment relationships represented by each individual polygon on a conventional soil map are extracted in the form of frequency distribution curves for the involved environmental covariates.Secondly,for each environmental covariate,these frequency distribution curves from individual polygons of the same soil map unit are synthesized to form the overall soil–environment relationship for that soil map unit across the mapped area.And lastly,the extracted soil–environment relationships are applied to updating the conventional soil map with new,improved environmental data by adopting a soil land inference model(SoLIM)framework.This study applied the proposed method to updating a conventional soil map of the Raffelson watershed in La Crosse County,Wisconsin,United States.The result from the proposed method was compared with that from the previous method of taking all polygons within the same soil map unit on a map as a whole.Evaluation results with independent soil samples showed that the proposed method exhibited better performance and produced higher accuracy.展开更多
The primary source of cadmium in cocoa beans has been linked to its direct uptake by the cacao plant from cadmium contaminated soils. This research was conducted to evaluate and interpret significant relationships bet...The primary source of cadmium in cocoa beans has been linked to its direct uptake by the cacao plant from cadmium contaminated soils. This research was conducted to evaluate and interpret significant relationships between cadmium levels in tissues of the cacao plant and soils from cocoa-growing areas in Trinidad and Tobago. Total (HNO<sub>3</sub>-extractable) concentrations of cadmium in both tissues and soils were determined. The levels of cadmium measured varied in the order: leaves > pods > shells > nibs > soil. Cadmium levels in all the cacao tissues analyzed were significantly (p < 0.05), positively and strongly correlated with each other. Additionally, significant (p < 0.05) positive relationships were also identified between Cd in cacao tissues and corresponding total HNO<sub>3</sub>-extractable Cd levels in soils. These findings suggest that they can possibly be used as predictive tools for assessing Cd levels in cacao.展开更多
The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flo...The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.展开更多
Vegetation cover derived from remote sensing image is widely used for soil erosion risk assessment, but there is no clear guideline to select the most appropriate temporal satellite data. It is common practice that sa...Vegetation cover derived from remote sensing image is widely used for soil erosion risk assessment, but there is no clear guideline to select the most appropriate temporal satellite data. It is common practice that satellite data during growing season are randomly selected and used in soil erosion risk assessment. However, the effectiveness of vegetation in protecting the soil is quite different even if it is the same growing season since vegetation covers change as they grow. This article aims to provide a method of choosing optimal vegetation cover for studying soil erosion risk using remote sensing, that is, the vegetation cover in the most appropriate temporal period. Based on the temporal relationship of the two most active impact factors, rainfall and vegetation, an index of RV is developed and used to indicate the relative erosion risk during the year. The results show that annual variation of rainfall is significant, and vegetation is relatively stable, resulting in their matching relationship is different in each year. The correlation coefficient reaches 0.89 between RV and real sediment transport during the period when rainfall can cause soil erosion. In other words, RV is a good indicator of soil erosion. Therefore, there is a good correlation between RV maximum and the optimal vegetation cover, which can help facilitate erosion research in the future, showing good potential for successful application in other places.展开更多
The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factor...The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.展开更多
基金supported by the National Natural Science Foundation of China (41431177 and 41601413)the National Basic Research Program of China (2015CB954102)+1 种基金the Natural Science Research Program of Jiangsu Province, China (BK20150975 and 14KJA170001)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province, China
文摘In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Considering that the words describing soil–environment relationships are often mixed with unrelated words, the first step is to extract the needed words and organize them in a structured way. This paper applies natural language processing(NLP) techniques to automatically extract and structure information from soil survey reports regarding soil–environment relationships. The method includes two steps:(1) construction of a knowledge frame and(2) information extraction using either a rule-based method or a statistic-based method for different types of information. For uniformly written text information, the rule-based approach was used to extract information. These types of variables include slope, elevation, accumulated temperature, annual mean temperature, annual precipitation, and frost-free period. For information contained in text written in diverse styles, the statistic-based method was adopted. These types of variables include landform and parent material. The soil species of China soil survey reports were selected as the experimental dataset. Precision(P), recall(R), and F1-measure(F1) were used to evaluate the performances of the method. For the rule-based method, the P values were 1, the R values were above 92%, and the F1 values were above 96% for all the involved variables. For the method based on the conditional random fields(CRFs), the P, R and F1 values for the parent material were, respectively, 84.15, 83.13, and 83.64%; the values for landform were 88.33, 76.81, and 82.17%, respectively. To explore the impact of text types on the performance of the CRFs-based method, CRFs models were trained and validated separately by the descriptive texts of soil types and typical profiles. For parent material, the maximum F1 value for the descriptive text of soil types was 90.7%, while the maximum F1 value for the descriptive text of soil profiles was only 75%. For landform, the maximum F1 value for the descriptive text of soil types was 85.33%, which was similar to that of the descriptive text of soil profiles(i.e., 85.71%). These results suggest that NLP techniques are effective for the extraction and structuration of soil–environment relationship information from a text data source.
基金supported by the National Natural Science Foundation of China (41431177 and 41422109)the Innovation Project of State Key Laboratory of Resources and Environmental Information System of China (O88RA20CYA)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province, China
文摘Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take all polygons of the same map unit on a map as a whole to extract the soil–environment relationship.Such approach ignores the difference in the environmental conditions represented by individual soil polygons of the same map unit.This paper proposes a method of mining soil–environment relationships from individual soil polygons to update conventional soil maps.The proposed method consists of three major steps.Firstly,the soil–environment relationships represented by each individual polygon on a conventional soil map are extracted in the form of frequency distribution curves for the involved environmental covariates.Secondly,for each environmental covariate,these frequency distribution curves from individual polygons of the same soil map unit are synthesized to form the overall soil–environment relationship for that soil map unit across the mapped area.And lastly,the extracted soil–environment relationships are applied to updating the conventional soil map with new,improved environmental data by adopting a soil land inference model(SoLIM)framework.This study applied the proposed method to updating a conventional soil map of the Raffelson watershed in La Crosse County,Wisconsin,United States.The result from the proposed method was compared with that from the previous method of taking all polygons within the same soil map unit on a map as a whole.Evaluation results with independent soil samples showed that the proposed method exhibited better performance and produced higher accuracy.
文摘The primary source of cadmium in cocoa beans has been linked to its direct uptake by the cacao plant from cadmium contaminated soils. This research was conducted to evaluate and interpret significant relationships between cadmium levels in tissues of the cacao plant and soils from cocoa-growing areas in Trinidad and Tobago. Total (HNO<sub>3</sub>-extractable) concentrations of cadmium in both tissues and soils were determined. The levels of cadmium measured varied in the order: leaves > pods > shells > nibs > soil. Cadmium levels in all the cacao tissues analyzed were significantly (p < 0.05), positively and strongly correlated with each other. Additionally, significant (p < 0.05) positive relationships were also identified between Cd in cacao tissues and corresponding total HNO<sub>3</sub>-extractable Cd levels in soils. These findings suggest that they can possibly be used as predictive tools for assessing Cd levels in cacao.
文摘The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.
文摘Vegetation cover derived from remote sensing image is widely used for soil erosion risk assessment, but there is no clear guideline to select the most appropriate temporal satellite data. It is common practice that satellite data during growing season are randomly selected and used in soil erosion risk assessment. However, the effectiveness of vegetation in protecting the soil is quite different even if it is the same growing season since vegetation covers change as they grow. This article aims to provide a method of choosing optimal vegetation cover for studying soil erosion risk using remote sensing, that is, the vegetation cover in the most appropriate temporal period. Based on the temporal relationship of the two most active impact factors, rainfall and vegetation, an index of RV is developed and used to indicate the relative erosion risk during the year. The results show that annual variation of rainfall is significant, and vegetation is relatively stable, resulting in their matching relationship is different in each year. The correlation coefficient reaches 0.89 between RV and real sediment transport during the period when rainfall can cause soil erosion. In other words, RV is a good indicator of soil erosion. Therefore, there is a good correlation between RV maximum and the optimal vegetation cover, which can help facilitate erosion research in the future, showing good potential for successful application in other places.
基金financially supported by the Research Project of Shanxi Scholarship Council of China (2017– 075)the Natural Science foundation for Young Scientists of Shanxi Province (201801D221103)the Innovation Grant of Shanxi Agricultural University (2017ZZ07)
文摘The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.