In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) t...In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions.展开更多
This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such senso...This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such sensors were used for soil suction measurement. They are microfabricated relative humidity sensors (footprint area 11,000 μm × 22,000 μm) operating based on changes in electrical resistivity detected by a cerium doped silica titania film deposited using a sol-gel technique. Their design required gathering experts in several engineering specialties. The working principle of the sensors is based on water vapour equilibrium between the air in the soil and in the sol-gel pores, due to the contact between the two porous materials. The spacing between interdigitated aluminium electrodes was optimized to improve the sensing properties of the sol-gel. The calibration of the different prototypes was done against compacted clay, varying the spacing between 100 and 700 μm. The sensors were also incorporated in soil samples for suction measurement during wetting and drying paths. They were validated by comparing the readings with those from a water dew point potentiometer. From this study it was possible to determine the optimum electrodes spacing of 200 μm. Error was explained by sol-gel heterogeneity effect and by the resolution of the sensing area provided by the electrodes spacing. When comparing with other sensors operating inside soil specimens in standard laboratorial tests, these sol-gel sensors extend the operation range available with the alternative technologies: while conventional tensiometers measure suction ranges from 0 to 1.8 MPa, our sensors demonstrate good results between 1 to 10 MPa (and higher).展开更多
The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flo...The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.展开更多
Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils whi...Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils which is used to predict the stability or seepage problems in the ground is one of the key features in unsaturated soil mechanics. Thus, many experimental works have reported on the unsaturated soil properties, and the soil-water characteristic curve (SWCC) test has contributed significantly to the interpretation of matric suction. Since traditional instruments cannot apply stress in SWCC tests, some researchers have developed suction controlled triaxial apparatus, by which SWCC tests are performed under different stress states. Determination of SWCCs under stress conditions similar to those in the field is key for interpretation of the hydro-mechanical behavior of unsaturated soils. This study conducted SWCC tests of unsaturated silt soil in low matric suction ranges under both drying and wetting conditions. The SWCCs were measured under one-dimensional and isotropic confining stresses ranging from 50 to 450 kPa. The micro porous membrane method was used instead of high air entry ceramic disk for controlling relatively low matric suction. The range of matric suction controlled was from 0 to 20 kPa. The study revealed that the measured SWCC in low matric suction ranges seems to be affected by the influence of stress conditions. Isotropic confining stress caused the void structure of the specimen to become dense and consequently, soil moisture flow movement also decreased. The water retention activity was obviously high, and the point regard to air entry value was larger. The study further suggests that the current methods adopted for estimating unsaturated soil properties require further development to take into account the effect of different stress conditions.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The trig...Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.展开更多
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua...The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,展开更多
To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-...To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-water retention curve(SWRC) and unsaturated shear strength of this soil were obtained.Results show that the air-entry suction and the residual degree of saturation of the tested soil are 106 kPa and 8%,respectively.The boundary effect zone and the transition zone can be identified on the desorption curve,but the residual zone is not so obvious.The unsaturated shear strength increases as suction increases within the range of controlled suction in the test,and friction angle,b,in the triaxial shear test is 17.6°.Based on the results,constitutive models for predicting the unsaturated shear strength using the SWRC were evaluated,and comparisons between prediction and measurement were made.It is concluded that for engineering purpose,the constitutive model should be carefully selected based on soil properties when predicting the unsaturated shear strength using the SWRC.展开更多
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ...The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.展开更多
The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an exp...The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.展开更多
The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is comp...The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.展开更多
Soil water retention curves(SWRCs) provide an important means of describing the response of unsaturated soils during drying / wetting processes in terms of variations of degree of saturation, water content or void r...Soil water retention curves(SWRCs) provide an important means of describing the response of unsaturated soils during drying / wetting processes in terms of variations of degree of saturation, water content or void ratio with suction. A key consideration in generating these curves is how to measure the suction. Frequently the filter paper technique is adopted, especially when high suctions are developed, e.g. with plastic clays. As each measurement takes at least a week with this technique, it can take months or years to generate a full SWRC in drying and wetting. Developments in laboratory tensiometers now allow matrix suctions up to about 1.5 MPa to be measured. With such a device it is possible to develop SWRCs for granular soils such as silts and clays in hours or days by continuous measurement. This paper describes an experimental set-up that was developed to measure changes in volume, water content and matrix suction during drying of three granular soils. Limitations of the apparatus and usefulness of the curves are discussed.展开更多
By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of...By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of SOM contents on SWC within low suctions and saturated infiltration rates were quantified. The simulated functions might be applied on regional experience forest-hydrology model. The improving function of protecting forest floor and increasing SOM contents on forest ecosystem hydrological effects were also embodied.展开更多
The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pr...The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pressure-plastic volumetric strain appear in the unsaturated state of a soil except the interaction between plastic volumetric and shear strains.It is very important to find that the suction possesses a dual property,which is the origin of generating its special functions.Thereby the effect of the suction on volumetric strain includes two opposite aspects.By means of this property of suction,the physical significance of effective stress parameter,effects of suction on volume change and preconsolidation pressure,and the mechanism of collapse upon wetting all can be explained.In addition,it is theoretically proved by application of this principle of interaction that the critical state line for unsaturated soils exists,and is unique and independent of the stress history.展开更多
Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cra...Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cracks and curling)has received increasing attention over the last few years,which has been mainly driven by the forecast climate change that will warm up our planet.There are significant gaps in the current knowledge related to the factors that control the development of curling deformations in soils.For this,the curling phenomenon is investigated through laboratory desiccation tests on different mixtures of artificial soils.The effects of soil grain size distribution,mineralogy,soil microstructure,and soil water content on the curling deformation are analyzed.Digital photos were taken at regular time intervals during the tests to understand the volume changes in the soil samples during drying.It is found that soil fabric and soil water content have significant effects on curling scenario.It is observed that the percentage of sand particles and the initial water content play a critical role in the development of soil curling.Samples of pure clayey minerals experienced shrinkage without or with minor curling during drying.展开更多
This study investigates the variation of matrix suction, water content and ground water level before and after the rainfall for the unsaturated colluvium slope in the campus of Fuafan University. The measuring devices...This study investigates the variation of matrix suction, water content and ground water level before and after the rainfall for the unsaturated colluvium slope in the campus of Fuafan University. The measuring devices including electrical matrix suction, water content and ground water level were set up in different surface of planting condition for each depth in real-time. It is observed that the matrix suction in the time from July to September is higher; however, when heavy rains caused by typhoon happened, matrix suction will drop rapidly. This variation is obvious in short grass zone and less clear in the broadleaftree zone. The maximum value in short grass zone, long grass zone and broadieaf tree zone at 2 m depth are 90.3, 68.2, 18.5 kPa, respectively. These results are expected to serve as a reference for the study of slope stability mechanisms.展开更多
基金the financial support funded by the Science and Technology Development Fund of Macao SAR (Grant Nos. 0026/2020/AFJ and SKL-IOTSC(UM)-2021-2023)the Funds for University of Macao (Grant No. MYRG2018-00173-FST)
文摘In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions.
文摘This paper describes the experimental procedure followed to fabricate and validate sol-gel based RH sensors which will be incorporated in soil specimens for standard laboratorial tests. It is the first time such sensors were used for soil suction measurement. They are microfabricated relative humidity sensors (footprint area 11,000 μm × 22,000 μm) operating based on changes in electrical resistivity detected by a cerium doped silica titania film deposited using a sol-gel technique. Their design required gathering experts in several engineering specialties. The working principle of the sensors is based on water vapour equilibrium between the air in the soil and in the sol-gel pores, due to the contact between the two porous materials. The spacing between interdigitated aluminium electrodes was optimized to improve the sensing properties of the sol-gel. The calibration of the different prototypes was done against compacted clay, varying the spacing between 100 and 700 μm. The sensors were also incorporated in soil samples for suction measurement during wetting and drying paths. They were validated by comparing the readings with those from a water dew point potentiometer. From this study it was possible to determine the optimum electrodes spacing of 200 μm. Error was explained by sol-gel heterogeneity effect and by the resolution of the sensing area provided by the electrodes spacing. When comparing with other sensors operating inside soil specimens in standard laboratorial tests, these sol-gel sensors extend the operation range available with the alternative technologies: while conventional tensiometers measure suction ranges from 0 to 1.8 MPa, our sensors demonstrate good results between 1 to 10 MPa (and higher).
文摘The mathematical equation for the moisture-suction relationship also known as soil water characteristic curve (SWCC) is one of the constitutive relations necessary for the computational modeling of deformation and flow problems of unsaturated soil using the finite element method. In this paper, a new empirical equa-tion for the SWCC is developed that incorporates the actual airentry suction and the maximum possible suction of the soil as input parameters. The capability of the new model is investigated by fitting the experimental data for twelve different soils that includes sands, silts, and clays. The model fits the experimental data well including in high suction range which is one of the difficulties observed in other commonly used models such as the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The numerical stability and the performance of the new model at low and high degrees of saturations in finite element simulation are investigated by simulating the dynamic response of a compacted embankment and the results are compared with similar predictions made using widely used SWCC models.
文摘Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils which is used to predict the stability or seepage problems in the ground is one of the key features in unsaturated soil mechanics. Thus, many experimental works have reported on the unsaturated soil properties, and the soil-water characteristic curve (SWCC) test has contributed significantly to the interpretation of matric suction. Since traditional instruments cannot apply stress in SWCC tests, some researchers have developed suction controlled triaxial apparatus, by which SWCC tests are performed under different stress states. Determination of SWCCs under stress conditions similar to those in the field is key for interpretation of the hydro-mechanical behavior of unsaturated soils. This study conducted SWCC tests of unsaturated silt soil in low matric suction ranges under both drying and wetting conditions. The SWCCs were measured under one-dimensional and isotropic confining stresses ranging from 50 to 450 kPa. The micro porous membrane method was used instead of high air entry ceramic disk for controlling relatively low matric suction. The range of matric suction controlled was from 0 to 20 kPa. The study revealed that the measured SWCC in low matric suction ranges seems to be affected by the influence of stress conditions. Isotropic confining stress caused the void structure of the specimen to become dense and consequently, soil moisture flow movement also decreased. The water retention activity was obviously high, and the point regard to air entry value was larger. The study further suggests that the current methods adopted for estimating unsaturated soil properties require further development to take into account the effect of different stress conditions.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
文摘Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.
基金Supported by the National Natural Science Foundation of China (50879044)Master's Degree Thesis Excellent Training Funds of Three Gorges University(2011PY008)
文摘The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,
基金Supported by the China National Key Technology R&D Program(2006BAJ27B02-02)the National Natural Science Foundation of China(40772180,40728003)Shanghai Leading Academic Discipline Project(B308)
文摘To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-water retention curve(SWRC) and unsaturated shear strength of this soil were obtained.Results show that the air-entry suction and the residual degree of saturation of the tested soil are 106 kPa and 8%,respectively.The boundary effect zone and the transition zone can be identified on the desorption curve,but the residual zone is not so obvious.The unsaturated shear strength increases as suction increases within the range of controlled suction in the test,and friction angle,b,in the triaxial shear test is 17.6°.Based on the results,constitutive models for predicting the unsaturated shear strength using the SWRC were evaluated,and comparisons between prediction and measurement were made.It is concluded that for engineering purpose,the constitutive model should be carefully selected based on soil properties when predicting the unsaturated shear strength using the SWRC.
基金Project supported by Science&Technology Program of Hubei Traffic and Transport Office,ChinaProject(41272377)supported by the National Natural Science Foundation of China
文摘The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.
文摘The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.
基金sup port provided by the Key Project of Ministry of Edu-cation of P.R.China(Grant No.02089)the National Key Grant Program of Basic Research De-velopment(Grant No.2002CCA01200).
文摘The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.
文摘Soil water retention curves(SWRCs) provide an important means of describing the response of unsaturated soils during drying / wetting processes in terms of variations of degree of saturation, water content or void ratio with suction. A key consideration in generating these curves is how to measure the suction. Frequently the filter paper technique is adopted, especially when high suctions are developed, e.g. with plastic clays. As each measurement takes at least a week with this technique, it can take months or years to generate a full SWRC in drying and wetting. Developments in laboratory tensiometers now allow matrix suctions up to about 1.5 MPa to be measured. With such a device it is possible to develop SWRCs for granular soils such as silts and clays in hours or days by continuous measurement. This paper describes an experimental set-up that was developed to measure changes in volume, water content and matrix suction during drying of three granular soils. Limitations of the apparatus and usefulness of the curves are discussed.
基金This research was supported by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-SW-319).
文摘By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of SOM contents on SWC within low suctions and saturated infiltration rates were quantified. The simulated functions might be applied on regional experience forest-hydrology model. The improving function of protecting forest floor and increasing SOM contents on forest ecosystem hydrological effects were also embodied.
文摘The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pressure-plastic volumetric strain appear in the unsaturated state of a soil except the interaction between plastic volumetric and shear strains.It is very important to find that the suction possesses a dual property,which is the origin of generating its special functions.Thereby the effect of the suction on volumetric strain includes two opposite aspects.By means of this property of suction,the physical significance of effective stress parameter,effects of suction on volume change and preconsolidation pressure,and the mechanism of collapse upon wetting all can be explained.In addition,it is theoretically proved by application of this principle of interaction that the critical state line for unsaturated soils exists,and is unique and independent of the stress history.
文摘Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cracks and curling)has received increasing attention over the last few years,which has been mainly driven by the forecast climate change that will warm up our planet.There are significant gaps in the current knowledge related to the factors that control the development of curling deformations in soils.For this,the curling phenomenon is investigated through laboratory desiccation tests on different mixtures of artificial soils.The effects of soil grain size distribution,mineralogy,soil microstructure,and soil water content on the curling deformation are analyzed.Digital photos were taken at regular time intervals during the tests to understand the volume changes in the soil samples during drying.It is found that soil fabric and soil water content have significant effects on curling scenario.It is observed that the percentage of sand particles and the initial water content play a critical role in the development of soil curling.Samples of pure clayey minerals experienced shrinkage without or with minor curling during drying.
基金Taiwan Science Council Research Project (94-2745-E211- 004-URD) and the Huafan University, Taiwan.
文摘This study investigates the variation of matrix suction, water content and ground water level before and after the rainfall for the unsaturated colluvium slope in the campus of Fuafan University. The measuring devices including electrical matrix suction, water content and ground water level were set up in different surface of planting condition for each depth in real-time. It is observed that the matrix suction in the time from July to September is higher; however, when heavy rains caused by typhoon happened, matrix suction will drop rapidly. This variation is obvious in short grass zone and less clear in the broadleaftree zone. The maximum value in short grass zone, long grass zone and broadieaf tree zone at 2 m depth are 90.3, 68.2, 18.5 kPa, respectively. These results are expected to serve as a reference for the study of slope stability mechanisms.