The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaeroblc experimental systems at constant temperature. The r...The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaeroblc experimental systems at constant temperature. The results showed that the reaction rate of Cr(Ⅵ) reduction was in the order of red soil 〈 yellow-brown soil 〈 chernozem and was proportional to the concentration of HCl-extractable iron in the soils. Dissolved and adsorbed iron in soil suspensions played an important role in accelerating Cr(Ⅵ) reduction. The reaction involved in the Cr(Ⅵ) reduction by Fe(Ⅱ) to produce Fe(ⅡI), which was reduced to Fe(Ⅱ) again by sulfide, could represent the catalytic pathway until about 70% of the initially present Cr(Ⅵ) was reduced. The catalysis occurred because the one-step reduction of Cr(Ⅵ) by sulfide was slower than the two-step process consisting of rapid Cr(Ⅵ) reduction by Fe(Ⅱ) followed by Fe(Ⅲ) reduction by sulfide. In essence, Fe(Ⅱ)/Fe(Ⅲ) species shuttle electrons from sulfide to Cr(Ⅵ), facilitating the reaction. The effect of iron, however, could be completely blocked by adding a strong Fe(Ⅱ)-complexing ligand, 1,10-phenanthroline, to the soil suspensions. In all the experiments, initial sulfide concentration was much higher than initial Cr(Ⅵ) concentration. The plots of In e[Cr(Ⅵ)] versus reaction time were linear up to approximately 70% of Cr(Ⅵ) reduction, suggesting a first-order reaction kinetics with respect to Cr(Ⅵ). Elemental sulfur, the product of sulfide oxidation, was found to accelerate Cr(Ⅵ) reduction at a later stage of the reaction, resulting in deviation from linearity for the In c[Cr(Ⅵ)] versus time plots.展开更多
The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different fie...The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different field strengths using a short high-voltage pulseapparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affectingit. It was found that Wien effect was much stronger in suspensions with a clay content of 30 gkg^(-1) from the soils equilibrated with a 1 X 10^(-4) KNO_3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., theWien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 gkg^(-1)) equilibrated with different nitrate solutions of a concentration of 1 X 10^(-4)/z molL^(-1), where z is the valence, varied with the type of nitrates, being lowest for NaNO_3 (47 kVcm^(-1)) and highest for Ca(NO_3)_2 (98 kV cm^(-1)). At high field strengths (larger than 130 kVcm^(-1)), the relative conductivities of yellow-brown soil suspensions containing different nitratesdiminished in the order: NaNO_3 > KNO_3 > Mg(NO_3)_2 > Zn(NO_3)_2 > Ca(NO_3)_2. The rates andintensities of the Wien effect in the suspensions of the three soils equilibrated with 5 X 10^(-5)mol L^(-1) Ca(NO_3)_2 solution were in the order of the yellow-brown soil > the latosol > the blacksoil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg )equilibrated with KNO_3 solutions of various concentrations clearly demonstrated that the moredilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensionsat high field strengths. The results for yellow-brown soil suspensions with different clayconcentrations indicated that as the clay concentration increased, the low field electricalconductivity, EC_0, also increased, but the TFS decreased, and the Wien effect increased.展开更多
In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a ...In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.展开更多
文摘The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaeroblc experimental systems at constant temperature. The results showed that the reaction rate of Cr(Ⅵ) reduction was in the order of red soil 〈 yellow-brown soil 〈 chernozem and was proportional to the concentration of HCl-extractable iron in the soils. Dissolved and adsorbed iron in soil suspensions played an important role in accelerating Cr(Ⅵ) reduction. The reaction involved in the Cr(Ⅵ) reduction by Fe(Ⅱ) to produce Fe(ⅡI), which was reduced to Fe(Ⅱ) again by sulfide, could represent the catalytic pathway until about 70% of the initially present Cr(Ⅵ) was reduced. The catalysis occurred because the one-step reduction of Cr(Ⅵ) by sulfide was slower than the two-step process consisting of rapid Cr(Ⅵ) reduction by Fe(Ⅱ) followed by Fe(Ⅲ) reduction by sulfide. In essence, Fe(Ⅱ)/Fe(Ⅲ) species shuttle electrons from sulfide to Cr(Ⅵ), facilitating the reaction. The effect of iron, however, could be completely blocked by adding a strong Fe(Ⅱ)-complexing ligand, 1,10-phenanthroline, to the soil suspensions. In all the experiments, initial sulfide concentration was much higher than initial Cr(Ⅵ) concentration. The plots of In e[Cr(Ⅵ)] versus reaction time were linear up to approximately 70% of Cr(Ⅵ) reduction, suggesting a first-order reaction kinetics with respect to Cr(Ⅵ). Elemental sulfur, the product of sulfide oxidation, was found to accelerate Cr(Ⅵ) reduction at a later stage of the reaction, resulting in deviation from linearity for the In c[Cr(Ⅵ)] versus time plots.
基金Project(Nos.49771046 and 49831005)supported by the National Natural Science Foundation of China.
文摘The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different field strengths using a short high-voltage pulseapparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affectingit. It was found that Wien effect was much stronger in suspensions with a clay content of 30 gkg^(-1) from the soils equilibrated with a 1 X 10^(-4) KNO_3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., theWien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 gkg^(-1)) equilibrated with different nitrate solutions of a concentration of 1 X 10^(-4)/z molL^(-1), where z is the valence, varied with the type of nitrates, being lowest for NaNO_3 (47 kVcm^(-1)) and highest for Ca(NO_3)_2 (98 kV cm^(-1)). At high field strengths (larger than 130 kVcm^(-1)), the relative conductivities of yellow-brown soil suspensions containing different nitratesdiminished in the order: NaNO_3 > KNO_3 > Mg(NO_3)_2 > Zn(NO_3)_2 > Ca(NO_3)_2. The rates andintensities of the Wien effect in the suspensions of the three soils equilibrated with 5 X 10^(-5)mol L^(-1) Ca(NO_3)_2 solution were in the order of the yellow-brown soil > the latosol > the blacksoil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg )equilibrated with KNO_3 solutions of various concentrations clearly demonstrated that the moredilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensionsat high field strengths. The results for yellow-brown soil suspensions with different clayconcentrations indicated that as the clay concentration increased, the low field electricalconductivity, EC_0, also increased, but the TFS decreased, and the Wien effect increased.
文摘In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.