Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically mod...Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically modified (GM) and non-GM crops in case where it is required. The trait is reversible and can be restored to fertility in the presence of nuclear restorer genes (Rf genes) and by environmental impacts. The aim of this study was to investigate the influence of the level of irrigation on the stability of CMS maize hybrids under defined greenhouse conditions. Additionally the combination of irrigation and air temperature was studied. Three CMS maize hybrids were grown with different levels of irrigation and in different temperature regimes. Tassel characteristics, pollen production and fertility were assessed. The CMS stability was high in hot air temperatures and decreased in lower temperatures. The level of irrigation had no major effect on the level of sterility. The extent of these phenomena was depending on the genotype of CMS maize and should be known before using CMS for coexistence purposes.展开更多
Phosphorus (P) and potassium (K) levels in southern Brazilian (Rio Grande do Sul, RS) soils are largely below the critical concentrations more than four decades after implementation of the officially recommended syste...Phosphorus (P) and potassium (K) levels in southern Brazilian (Rio Grande do Sul, RS) soils are largely below the critical concentrations more than four decades after implementation of the officially recommended system. This study aims to evaluate the increase in P and K levels in 0-10 and 0-20 cm deep samples from no-till soils using the Mehlich-1 (M1) and Mehlich-3 (M3) extractants as well as resin methods and to estimate the amount of P2O5 and K2O fertilizers necessary to increase the P and K soil levels by 1 mg·kg-1. The study was conducted in fields cultivated using a no-till system (direct planting) to grow soybeans, wheat, maize, pasture, and cover crops and fertilized with P2O5 and K2O. Soil samples were collected from the 0-10 and 0-20 cm soil layers and analyzed by the M1, M3, and resin methods. The results demonstrated that the P and K levels increased in the 0-10 and 0-20 cm layers. However, the amount of these levels increased depending on the source of phosphate fertilization and on the P and K extraction methods used. The amount of P2O5 fertilization needed to raise the P level by 1 mg·kg-1 was greater in the 0-20 cm layer than in the 0-10 cm layer, and the amount of K2O fertilization needed to raise the K level by 1 mg·kg-1 was higher in the 0-10 cm layer than in the 0-20 cm layer.展开更多
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland...The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.展开更多
In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables r...In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m^3·m^-3 in Experiment II to 0.01 m^3·m^-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0℃ to 28.8℃. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3 W.cm^-1·K^-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82 W.cm^-1·K^-1, 2.15 W.cm^-1·K^-1, and 2.21 W. cm^-1·K^-1, which were always higher than that in Experiment III.展开更多
【目的】研究不同栽培方式下不同播种深度对马铃薯土壤水热及产量的影响,为冬种马铃薯栽培技术提供重要参考。【方法】以费乌瑞它、丽薯6号为试验材料,设置黑膜覆盖、稻草覆盖和常规种植3种栽培方式下的5、10、15和20 cm 4种不同播种深...【目的】研究不同栽培方式下不同播种深度对马铃薯土壤水热及产量的影响,为冬种马铃薯栽培技术提供重要参考。【方法】以费乌瑞它、丽薯6号为试验材料,设置黑膜覆盖、稻草覆盖和常规种植3种栽培方式下的5、10、15和20 cm 4种不同播种深度处理,测定马铃薯土壤含水量、温度、物候期及产量等农艺性状。【结果】与常规种植相比,丽薯6号黑膜覆盖和稻草覆盖2种栽培方式下的土壤温度均提高1.9℃,在苗期、发棵期、结薯期,黑膜覆盖5~10 cm土层的土壤含水量均最大;在黑膜覆盖播种深度5和10 cm处理下,2个马铃薯品种的生育期最短;丽薯6号和费乌瑞它分别在黑膜覆盖播种深度为10和15 cm时,各农艺性状、产量(57.20、36.30 t/hm2)和经济效益表现最优。【结论】广西冬种马铃薯丽薯6号、费乌瑞它2个品种的最佳栽培方式分别为黑膜覆盖播种深度10和15 cm,研究结果可为广西冬种马铃薯生产合理选择和应用栽培方式提供科学参考。展开更多
文摘Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically modified (GM) and non-GM crops in case where it is required. The trait is reversible and can be restored to fertility in the presence of nuclear restorer genes (Rf genes) and by environmental impacts. The aim of this study was to investigate the influence of the level of irrigation on the stability of CMS maize hybrids under defined greenhouse conditions. Additionally the combination of irrigation and air temperature was studied. Three CMS maize hybrids were grown with different levels of irrigation and in different temperature regimes. Tassel characteristics, pollen production and fertility were assessed. The CMS stability was high in hot air temperatures and decreased in lower temperatures. The level of irrigation had no major effect on the level of sterility. The extent of these phenomena was depending on the genotype of CMS maize and should be known before using CMS for coexistence purposes.
基金Authors are thankfully to all Universities and agricultural extensions programs from Rio Grande do Sul State that kindly support this work allowing access in their experiments to collect informationto support us with crop yield and crop biomass data.
文摘Phosphorus (P) and potassium (K) levels in southern Brazilian (Rio Grande do Sul, RS) soils are largely below the critical concentrations more than four decades after implementation of the officially recommended system. This study aims to evaluate the increase in P and K levels in 0-10 and 0-20 cm deep samples from no-till soils using the Mehlich-1 (M1) and Mehlich-3 (M3) extractants as well as resin methods and to estimate the amount of P2O5 and K2O fertilizers necessary to increase the P and K soil levels by 1 mg·kg-1. The study was conducted in fields cultivated using a no-till system (direct planting) to grow soybeans, wheat, maize, pasture, and cover crops and fertilized with P2O5 and K2O. Soil samples were collected from the 0-10 and 0-20 cm soil layers and analyzed by the M1, M3, and resin methods. The results demonstrated that the P and K levels increased in the 0-10 and 0-20 cm layers. However, the amount of these levels increased depending on the source of phosphate fertilization and on the P and K extraction methods used. The amount of P2O5 fertilization needed to raise the P level by 1 mg·kg-1 was greater in the 0-20 cm layer than in the 0-10 cm layer, and the amount of K2O fertilization needed to raise the K level by 1 mg·kg-1 was higher in the 0-10 cm layer than in the 0-20 cm layer.
基金Supported by the National Natural Science Foundation of China(No.40921061)the"Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues"of Chinese Academy of Sciences(No.XDA05050509)the National Basic Research Program(973 Program)of China(No.2010CB950702)
文摘The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.
文摘In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m^3·m^-3 in Experiment II to 0.01 m^3·m^-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0℃ to 28.8℃. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3 W.cm^-1·K^-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82 W.cm^-1·K^-1, 2.15 W.cm^-1·K^-1, and 2.21 W. cm^-1·K^-1, which were always higher than that in Experiment III.