期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characteristics of Soil Porosity and Changes of Soil Water Content in Eucalyptus Plantation 被引量:1
1
作者 熊柳梅 黄金生 +7 位作者 曾艳 黄雁飞 陈桂芬 刘永贤 周柳强 谭宏伟 黄美福 黄玉溢 《Agricultural Science & Technology》 CAS 2015年第4期662-667,共6页
Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for ... Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P&gt;0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P&lt;0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands. 展开更多
关键词 Eucalyptus plantatlon soil porosity changes of soil water content Red soli Hilly reglon South China
下载PDF
Variations in soil moisture over the ‘Huang-Huai-Hai Plain' in China due to temperature change using the CNOP-P method and outputs from CMIP5 被引量:1
2
作者 SUN GuoDong PENG Fei MU Mu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1838-1853,共16页
In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the... In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs. 展开更多
关键词 CNOP-P Surface soil liquid water CMIP5 Climate change Seasonal and regional heterogeneity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部