期刊文献+
共找到939篇文章
< 1 2 47 >
每页显示 20 50 100
Design and Application of Automatic Test System of Soil Water Characteristic Curve
1
作者 唐玉邦 徐磊 +3 位作者 虞利俊 裴勤 王恒义 黄万喜 《Agricultural Science & Technology》 CAS 2014年第11期2026-2029,共4页
[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c... [Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation. 展开更多
关键词 soil water characteristics curve water tension meter Automatic detec-tion Wireless charging
下载PDF
Prediction of soil–water characteristic curve for Malan loess in Loess Plateau of China 被引量:11
2
作者 LI Ping LI Tong-lu 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期432-447,共16页
To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are... To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are proposed.The predicted SWCC is presented in the form of the BRUTSAERT equation,in which the four model parameters can be estimated from soil physical properties using the best correlations obtained in the present study along with one measured data point.The proposed one-point methods are validated using the measured SWCC data reported in the literature.The results of validation studies suggest that the proposed one-point methods can provide reasonable prediction of the SWCC for natural and remoulded Malan loess.The measured data point should be within the transition zone;the measured suction is suggested between25to100kPa for natural loess,while between100to500kPa for remoulded loess. 展开更多
关键词 soilwater characteristic curve Malan loess natural loess remoulded loess one-point method physical properties
下载PDF
Influences affecting the soil-water characteristic curve 被引量:9
3
作者 周建 俞建霖 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期797-804,共8页
The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ... The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model. 展开更多
关键词 soil-water characteristic curve (swcc Unsaturated soil Mathematical expression
下载PDF
Effects of sample dimensions and shapes on measuring soil-water characteristic curves using pressure plate 被引量:8
4
作者 Min Wang Lingwei Kong Meng Zang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第4期463-468,共6页
It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fi... It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate. 展开更多
关键词 soil-water characteristic curve (swcc)Pressure plateMercury intrusionMicrostructureExpansive soil
下载PDF
Rapid testing and prediction of soil–water characteristic curve of subgrade soils considering stress state and degree of compaction 被引量:2
5
作者 Junhui Peng Huiren Hu Junhui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3305-3315,共11页
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve... The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC. 展开更多
关键词 Subgrade soil soilwater characteristic curve(swcc) Overburden stress Degree of compaction Prediction mode
下载PDF
Predicting the entire soil-water characteristic curve using measurements within low suction range 被引量:5
6
作者 YE Yun-xue ZOU Wei-lie +1 位作者 HAN Zhong LIU Xiao-wen 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1198-1214,共17页
The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental f... The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range. 展开更多
关键词 UNSATURATED soilS soil-water characteristic curve CAPILLARY Adsorption Prediction
下载PDF
Soil Water Characteristic Curve of an Unsaturated Soil under Low Matric Suction Ranges and Different Stress Conditions
7
作者 Paul Habasimbi Tomoyoshi Nishimura 《International Journal of Geosciences》 2019年第1期39-56,共18页
Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils whi... Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils which is used to predict the stability or seepage problems in the ground is one of the key features in unsaturated soil mechanics. Thus, many experimental works have reported on the unsaturated soil properties, and the soil-water characteristic curve (SWCC) test has contributed significantly to the interpretation of matric suction. Since traditional instruments cannot apply stress in SWCC tests, some researchers have developed suction controlled triaxial apparatus, by which SWCC tests are performed under different stress states. Determination of SWCCs under stress conditions similar to those in the field is key for interpretation of the hydro-mechanical behavior of unsaturated soils. This study conducted SWCC tests of unsaturated silt soil in low matric suction ranges under both drying and wetting conditions. The SWCCs were measured under one-dimensional and isotropic confining stresses ranging from 50 to 450 kPa. The micro porous membrane method was used instead of high air entry ceramic disk for controlling relatively low matric suction. The range of matric suction controlled was from 0 to 20 kPa. The study revealed that the measured SWCC in low matric suction ranges seems to be affected by the influence of stress conditions. Isotropic confining stress caused the void structure of the specimen to become dense and consequently, soil moisture flow movement also decreased. The water retention activity was obviously high, and the point regard to air entry value was larger. The study further suggests that the current methods adopted for estimating unsaturated soil properties require further development to take into account the effect of different stress conditions. 展开更多
关键词 soil water characteristic curve SUCTION UNSATURATED soil MEMBRANE Technique
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
8
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors soil Moisture Conditions soil water characteristic curves Specific water Capacity Wetting-Drying Cycles
下载PDF
Soil freezing process and different expressions for the soil-freezing characteristic curve 被引量:5
9
作者 Jun Ping Ren Sai K.Vanapalli Zhong Han 《Research in Cold and Arid Regions》 CSCD 2017年第3期221-228,共8页
The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understand... The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understanding the transportation of heat,water,and solute in frozen soils.In this paper,the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve(SWCC)of unfrozen unsaturated soil are reviewed.Based on similar characteristics between SWCC and SFCC,a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes.Various SFCC expressions from the literature are summarized.Four widely used expressions(i.e.,power relationship,exponential relationship,van Genuchten 1980 equation and Fredlund and Xing 1994 equation)are evaluated using published experimental data on four different soils(i.e.,sandy loam,silt,clay,and saline silt).Results show that the exponential relationship and van Genuchten(1980)equation are more suitable for sandy soils.The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes;however,it exhibits limitations when fitting the saline silt data.The Fredlund and Xing(1994)equation is suitable for fitting the SFCCs for all soils studied in this paper. 展开更多
关键词 FROZEN soil soil-freezing characteristic curve Clapeyron equation soil-water characteristic curve UNFROZEN water content
下载PDF
Factors Influencing the Soil-Water Characteristics of Unsaturated Tropical Silty Sand
10
作者 B. D. Oluyemi-Ayibiowu T. O. Akinleye 《Journal of Geoscience and Environment Protection》 2019年第5期264-273,共10页
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ... Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics. 展开更多
关键词 soil-water characteristicS soil-water characteristicS curve TROPICAL Silty Sand soil COMPACTION water Content Compactive EFFORTS
下载PDF
Towards an improved prediction of soil-freezing characteristic curve based on extreme gradient boosting model
11
作者 Kai-Qi Li Hai-Long He 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第6期229-243,共15页
As an essential property of frozen soils,change of unfrozen water content(UWC)with temperature,namely soil-freezing characteristic curve(SFCC),plays significant roles in numerous physical,hydraulic and mechanical proc... As an essential property of frozen soils,change of unfrozen water content(UWC)with temperature,namely soil-freezing characteristic curve(SFCC),plays significant roles in numerous physical,hydraulic and mechanical processes in cold regions,including the heat and water transfer within soils and at the land–atmosphere interface,frost heave and thaw settlement,as well as the simulation of coupled thermo-hydro-mechanical interactions.Although various models have been proposed to estimate SFCC,their applicability remains limited due to their derivation from specific soil types,soil treatments,and test devices.Accordingly,this study proposes a novel data-driven model to predict the SFCC using an extreme Gradient Boosting(XGBoost)model.A systematic database for SFCC of frozen soils compiled from extensive experimental investigations via various testing methods was utilized to train the XGBoost model.The predicted soil freezing characteristic curves(SFCC,UWC as a function of temperature)from the well-trained XGBoost model were compared with original experimental data and three conventional models.The results demonstrate the superior performance of the proposed XGBoost model over the traditional models in predicting SFCC.This study provides valuable insights for future investigations regarding the SFCC of frozen soils. 展开更多
关键词 soil freezing characteristic curve(SFCC) soil temperature Unfrozen water content XGBoost model Machine Learning Feature importance
原文传递
Soil-Water Charateristics of Tropical Clay Soil under High and Low Suction Conditions
12
作者 Bamitale Dorcas Oluyemi-Ayibiowu Taiwo Olawale Akinleye +1 位作者 Olaolu George Fadugba Ayodeji Stanley Olowoselu 《Journal of Geoscience and Environment Protection》 2020年第11期162-175,共14页
Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water ... Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water Characteristics (SWC) of the soil was derived using the pressure plate extractor equipment and SWC Curves (SWCC) plotted as gravimetric water content versus logarithm of matric suction. The Air Entry Values (A.E.V) obtained from experimental work ranged from 21 kPa to 59 kPa and compared favourably well with those estimated from predictive models with values of 23 kPa to 52 kPa. Specimens compacted with greater compactive effort (Modified proctor) and at optimum moisture content produced the largest air entry value of 59 kPa and reduced air voids. Changes observed in the shape of the SWCC were consistent with changes in pore size which occurred by varying compaction conditions. The shape of the soil-water characteristics curve was found to depend on the soil structure, compactive water content and compactive effort and not solely on the percentage of fine particles. 展开更多
关键词 soil-water characteristics Tropical Clay soil Compaction water Content Compactive Efforts soil-water characteristics curve
下载PDF
A Statistical Model for the Relative Hydraulic Conductivity of Water Phase in Unsaturated Soils
13
作者 Nadarajah Ravichandran Shada Krishnapillai 《International Journal of Geosciences》 2011年第4期484-492,共9页
Permeability coefficients of fluids occupying the pore space of a porous medium have significant influence on the flow of these fluids through the porous medium. In the case of unsaturated soils, in addition to other ... Permeability coefficients of fluids occupying the pore space of a porous medium have significant influence on the flow of these fluids through the porous medium. In the case of unsaturated soils, in addition to other parameters such as void ratio, void distribution, particle size distribution and initial density the degree of saturation also affects the permeability coefficient of water. The degree of saturation, in unsaturated soil, is directly related to the matric suction of the soil through soil water characteristic curve. Matric suction is one of the two stress state variables widely used to characterize the deformation behavior of unsaturated soils. Therefore, it can be stated that both flow and deformation behaviors of unsaturated soil are affected by the permeability coefficient of water. Numerical modeling of coupled deformation-flow behavior of unsaturated soil requires a mathematical equation that relates the permeability coefficient to the degree of saturation. Since the parameters that affect the permeability coefficient of water in unsaturated soil have similar direct or indirect effects on the soil water characteristic curve, permeability can be effectively predicted using the soil water characteristic curve as done in statistical models. In this paper, a statistical model is proposed for the permeability of water in unsaturated soil using soil water characteristic curve of the soil. The calibrated parameters of the soil water characteristic curve are directly used in the prediction of permeability with- out additional calibration using measured permeability data. The predictive capability of the new equation is verified by matching the measured data of eight different soils found in the literature. 展开更多
关键词 UNSATURATED soilS PERMEABILITY Function RELATIVE PERMEABILITY of UNSATURATED soilS RELATIVE PERMEABILITY Using soil-water characteristic curve
下载PDF
Study on the Soil Moisture Stress Level in Regulated Deficit Irrigation Experiment 被引量:24
14
作者 柴红敏 张巍巍 蔡焕杰 《Agricultural Science & Technology》 CAS 2009年第2期154-156,共3页
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu... On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture. 展开更多
关键词 Regulated deficit irrigation soil moisture availability soil water suction soil moisture characteristic curve soil moisture stress level
下载PDF
土水特征曲线(SWCC)的滞回特性模拟研究 被引量:11
15
作者 张雪东 赵成刚 +1 位作者 刘艳 蔡国庆 《工程地质学报》 CSCD 北大核心 2010年第6期920-925,共6页
为了模拟非饱和土的水力、力学特性在多次降雨、蒸发过程中的变化特性,本文以传统域模型的基本原理为基础,推到得到了一个能够模拟SWCC滞后性的计算模型,该模型计算方法简单,易于通过程序实现,且通过与试验数据和其他模型的计算结果对比... 为了模拟非饱和土的水力、力学特性在多次降雨、蒸发过程中的变化特性,本文以传统域模型的基本原理为基础,推到得到了一个能够模拟SWCC滞后性的计算模型,该模型计算方法简单,易于通过程序实现,且通过与试验数据和其他模型的计算结果对比,验证了该模型的合理性,同时,这个模型可为研究在复杂吸力变化状态下非饱和土的渗流特性、强度特性以及本构模型的研究打下一定的基础。 展开更多
关键词 非饱和土 土水特征曲线 域模型 滞回性
下载PDF
非饱和土土水特征曲线(SWCC)测试与预测 被引量:57
16
作者 李志清 李涛 +2 位作者 胡瑞林 李熊 李壮举 《工程地质学报》 CSCD 2007年第5期700-707,共8页
非饱和土土水特征曲线(SWCC)表示了土中含水量与吸力之间的关系。文章介绍了6种常用方法,各有其适用范围。体积压力板仪可量测最大基质吸力值为1500kPa的干燥曲线和浸湿曲线;超过1500kPa时,可用盐溶液法进行量测;Tem-ple仪可量测基质吸... 非饱和土土水特征曲线(SWCC)表示了土中含水量与吸力之间的关系。文章介绍了6种常用方法,各有其适用范围。体积压力板仪可量测最大基质吸力值为1500kPa的干燥曲线和浸湿曲线;超过1500kPa时,可用盐溶液法进行量测;Tem-ple仪可量测基质吸力达100kPa的干燥曲线;滤纸法可用于测量土体的基质吸力与总吸力;Dew-point电位计可用于量测土样总吸力变化,尤其适合渗透吸力的量测;TDR探头适合于量测小于300kPa的基质吸力。用GDS非饱和土三轴仪可以进行SWCC测试,测试范围主要取决于陶土板的进气值。用准确的数学模型对测得的含水量、吸力数据进行拟合,对于预测非饱和土力学性质、渗透系数、抗剪强度及分析边坡稳定性有重要意义。由于准确测试SWCC难度较大,并且测试影响因素较多,所以根据土体孔隙大小分布和颗粒大小分布情况预测SWCC,也是一种较好的方法。 展开更多
关键词 非饱和土 土水特征曲线 数学模型
下载PDF
利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率 被引量:10
17
作者 陶高梁 李进 +3 位作者 庄心善 肖衡林 崔惜琳 徐维生 《岩土力学》 EI CAS CSCD 北大核心 2018年第4期1256-1262,共7页
残余含水率在非饱和土渗流理论、强度理论等方面都是重要的参数,然而土-水特征曲线(SWCC)试验测量时一般难以达到残余阶段,常常通过经验法(包括模型拟合法)估算残余含水率,方法的适用性值得论证。以武汉黏性土为研究对象,制备不同初始... 残余含水率在非饱和土渗流理论、强度理论等方面都是重要的参数,然而土-水特征曲线(SWCC)试验测量时一般难以达到残余阶段,常常通过经验法(包括模型拟合法)估算残余含水率,方法的适用性值得论证。以武汉黏性土为研究对象,制备不同初始孔隙比试样,利用压力板仪测量SWCC,通过模型拟合的方法计算残余含水率;进行自然状态下水分蒸发试验,根据失水速率定义了临残时间,依据临残时间确定残余含水率;利用核磁共振技术研究微观孔隙分布特性,解释控制残余含水率大小的微观规律。研究结果表明:模型拟合的方法可估算残余含水率,但准确性与模型选择及残余含水率初步范围的限定直接相关;水分蒸发试验是确定残余含水率有效可行的直接方法;武汉黏性土微观孔隙呈三峰分布,残余含水率与第1峰之前的微观孔隙水分紧密相关,依据弛豫时间小于0.267 38 ms的T2谱面积可较为准确地预测残余含水率,对于其他土体该方法需要进一步论证与完善。 展开更多
关键词 残余含水率 土-水特征曲线 水分蒸发 核磁共振
下载PDF
考虑初始干密度影响的SWCC预测方法研究 被引量:15
18
作者 蔡国庆 张策 +1 位作者 李舰 赵成刚 《岩土工程学报》 EI CAS CSCD 北大核心 2018年第S2期27-31,共5页
首先研究了3个典型的土水特征曲线模型(van Genuchten模型、Fredlund-Xing模型和Brooks-Corey模型)对不同类型土(黏土、粉土及砂土)的SWCC拟合效果。其次,为了分析各模型对SWCC的干密度相关性拟合效果,讨论了各模型的参数随土体初始孔... 首先研究了3个典型的土水特征曲线模型(van Genuchten模型、Fredlund-Xing模型和Brooks-Corey模型)对不同类型土(黏土、粉土及砂土)的SWCC拟合效果。其次,为了分析各模型对SWCC的干密度相关性拟合效果,讨论了各模型的参数随土体初始孔隙比的变化规律。最后,提出了一种考虑初始干密度影响的SWCC预测方法。方法中假定同一吸力下初始孔隙比与饱和度间存在着线性对应的关系。并且利用该方法对试验结果进行了验证,证实了其合理性。 展开更多
关键词 非饱和土 土–水特征曲线 初始干密度 基质吸力
下载PDF
考虑尿素浓度对SWCC影响的VG模型 被引量:2
19
作者 田东方 余东华 《水利水运工程学报》 CSCD 北大核心 2014年第4期65-69,共5页
利用Tempe压力膜仪,进行了不同浓度尿素溶液的土-水特征曲线(SWCC)试验,得出了不同SWCC的Van Genuchten(VG)拟合模型。结合各VG模型,采用线性回归分析,确定了模型中各参数与尿素浓度的关系,进而建立了能够考虑尿素浓度影响的VG模型。所... 利用Tempe压力膜仪,进行了不同浓度尿素溶液的土-水特征曲线(SWCC)试验,得出了不同SWCC的Van Genuchten(VG)拟合模型。结合各VG模型,采用线性回归分析,确定了模型中各参数与尿素浓度的关系,进而建立了能够考虑尿素浓度影响的VG模型。所得模型中各参数拟合相关度均较高。由所建模型可知,尿素浓度对参数α影响较小,而对参数n影响较大;浓度越大,参数α越小,而参数n越大。所得结果弥补了其他方法不能考虑尿素浓度对SWCC的影响,对补充和发展SWCC试验和理论具有一定的意义。所建SWCC模型未考虑尿素浓度对溶质吸力的影响,也未开展尿素溶液对土体SWCC影响机理研究;这两方面有待以后的工作进一步研究。 展开更多
关键词 尿素浓度 swcc VG模型 压力膜仪
下载PDF
非饱和重塑黄土SWCC试验与拟合研究 被引量:1
20
作者 白雪亮 张彬 王汉勋 《矿产与地质》 2020年第5期988-994,共7页
利用GCTS土-水特征曲线仪研究了颗粒级配对非饱和重塑黄土土-水特性的影响;通过Brooks&Corey、Van Genuchten、Gardner、Fredlund&Xing(3参数模型)、Fredlund&Xing(4参数模型)五种常用模型对试验数据进行了拟合分析,得到适... 利用GCTS土-水特征曲线仪研究了颗粒级配对非饱和重塑黄土土-水特性的影响;通过Brooks&Corey、Van Genuchten、Gardner、Fredlund&Xing(3参数模型)、Fredlund&Xing(4参数模型)五种常用模型对试验数据进行了拟合分析,得到适合非饱和重塑黄土的SWCC(soil-water characteristic curve)数学模型;通过提出“滞回比”这一参数,初步研究了颗粒级配对土-水特征曲线滞回特性的影响;利用Gardner经验模型、Van Genuchten统计传导模型对非饱和重塑黄土试样的渗透系数进行了拟合分析。结果表明:Gardner和Van Genuchten模型对非饱和重塑黄土土-水特征曲线拟合效果最好,a值随颗粒粒径的增大而减小,n值随颗粒粒径的增大而增大,滞回比随着颗粒粒径的增大逐渐减小;非饱和重塑黄土试样渗透系数随基质吸力的变化而变化,同一种模型对渗透系数的预测在增减湿过程中渗透系数数值存在差别。 展开更多
关键词 非饱和黄土 swcc数学模型 土-水特征曲线 拟合分析
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部