Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation...Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.展开更多
为解决地形复杂区域因无法及时获取数据而影响旱灾监测的问题,该研究以湖北省清江流域中上游为例,基于具有较强物理机制的分布式水文模型(soil and water assessment tool,SWAT),建立作物水分亏缺指数进行农业旱情监测,其中,利用该流域...为解决地形复杂区域因无法及时获取数据而影响旱灾监测的问题,该研究以湖北省清江流域中上游为例,基于具有较强物理机制的分布式水文模型(soil and water assessment tool,SWAT),建立作物水分亏缺指数进行农业旱情监测,其中,利用该流域的土地覆被、土壤、地形、气象以及2003-2005年和2007-2010年水文观测数据构建了流域SWAT模型,模拟作物水分亏缺指数的有关参量,包括潜在蒸散量和降水量。研究结果表明:1)SWAT模型模拟的潜在蒸散量与气象数据计算得到的潜在蒸散量拟合相关度达到97%以上;2)与标准化降水指数监测结果进行对比,基于SWAT模型建立的作物水分亏缺指数能够从机理方面客观反映监测区域作物生长期的受旱程度,有效实现了流域尺度的旱灾监测,克服了复杂地形区利用少数气象站点建立气象干旱指标评价旱情的局限性。该研究可为复杂地形区旱灾评估提供可行途径。展开更多
为了准确评估作物水分亏缺程度及其敏感性动态对作物产量的影响,该研究结合基于根系加权土壤水分有效性的植物水分亏缺指数(Plant Water Deficit Index,PWDI)与基于归一化热单元指数的S型累积水分敏感指数,建立了3种不同形式的作物水分...为了准确评估作物水分亏缺程度及其敏感性动态对作物产量的影响,该研究结合基于根系加权土壤水分有效性的植物水分亏缺指数(Plant Water Deficit Index,PWDI)与基于归一化热单元指数的S型累积水分敏感指数,建立了3种不同形式的作物水分生产函数(Crop Water Production Function,CWPF),即Blank加法模型(PWDI-B)、Jensen(PWDI-J)和Rao(PWDI-R)乘法模型。通过2 a冬小麦栽培田间蒸渗仪试验(北京昌平)和1 a冬小麦栽培田间滴灌试验(山东黄河三角洲),优化了土壤水分胁迫修正系数中参数,进而对PWDI估算精度及CWPF产量估算效果进行检验与评价。结果表明:蒸渗仪试验基于根系加权估算的PWDI与实测值吻合良好,决定系数R^(2)为0.78,标准化均方根误差(Normalized Root Mean Squared Error,NRMSE)为0.16;滴灌试验PWDI均值与作物株高(r=−0.95)、生物量及产量(r≤−0.79)均具有较好的相关性,表明根系加权PWDI能较准确地反映不同试验条件下冬小麦的水分亏缺程度及其对作物生长的影响;此外,无论是蒸渗仪试验还是滴灌试验,所建的3个CWPF对冬小麦产量的估算精度均在可接受范围内(R^(2)≥0.78,NRMSE≤0.11),且PWDI-R估算精度依次高于PWDI-J、PWDI-B、以及线性回归模型(即PWDI均值与产量的线性拟合模型)。因此,根系加权PWDI与S型水分敏感指数累积函数融合可用于合理构建冬小麦水分生产函数,其中PWDI-R乘法模型可优先推荐用于研究区冬小麦产量估算和灌溉制度优化,从而为当地冬小麦田间水分管理提供理论依据。展开更多
文摘Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.
文摘为解决地形复杂区域因无法及时获取数据而影响旱灾监测的问题,该研究以湖北省清江流域中上游为例,基于具有较强物理机制的分布式水文模型(soil and water assessment tool,SWAT),建立作物水分亏缺指数进行农业旱情监测,其中,利用该流域的土地覆被、土壤、地形、气象以及2003-2005年和2007-2010年水文观测数据构建了流域SWAT模型,模拟作物水分亏缺指数的有关参量,包括潜在蒸散量和降水量。研究结果表明:1)SWAT模型模拟的潜在蒸散量与气象数据计算得到的潜在蒸散量拟合相关度达到97%以上;2)与标准化降水指数监测结果进行对比,基于SWAT模型建立的作物水分亏缺指数能够从机理方面客观反映监测区域作物生长期的受旱程度,有效实现了流域尺度的旱灾监测,克服了复杂地形区利用少数气象站点建立气象干旱指标评价旱情的局限性。该研究可为复杂地形区旱灾评估提供可行途径。
文摘为了准确评估作物水分亏缺程度及其敏感性动态对作物产量的影响,该研究结合基于根系加权土壤水分有效性的植物水分亏缺指数(Plant Water Deficit Index,PWDI)与基于归一化热单元指数的S型累积水分敏感指数,建立了3种不同形式的作物水分生产函数(Crop Water Production Function,CWPF),即Blank加法模型(PWDI-B)、Jensen(PWDI-J)和Rao(PWDI-R)乘法模型。通过2 a冬小麦栽培田间蒸渗仪试验(北京昌平)和1 a冬小麦栽培田间滴灌试验(山东黄河三角洲),优化了土壤水分胁迫修正系数中参数,进而对PWDI估算精度及CWPF产量估算效果进行检验与评价。结果表明:蒸渗仪试验基于根系加权估算的PWDI与实测值吻合良好,决定系数R^(2)为0.78,标准化均方根误差(Normalized Root Mean Squared Error,NRMSE)为0.16;滴灌试验PWDI均值与作物株高(r=−0.95)、生物量及产量(r≤−0.79)均具有较好的相关性,表明根系加权PWDI能较准确地反映不同试验条件下冬小麦的水分亏缺程度及其对作物生长的影响;此外,无论是蒸渗仪试验还是滴灌试验,所建的3个CWPF对冬小麦产量的估算精度均在可接受范围内(R^(2)≥0.78,NRMSE≤0.11),且PWDI-R估算精度依次高于PWDI-J、PWDI-B、以及线性回归模型(即PWDI均值与产量的线性拟合模型)。因此,根系加权PWDI与S型水分敏感指数累积函数融合可用于合理构建冬小麦水分生产函数,其中PWDI-R乘法模型可优先推荐用于研究区冬小麦产量估算和灌溉制度优化,从而为当地冬小麦田间水分管理提供理论依据。