Multiple-dimensional water flow in variably saturated soils plays an important role in ecological systems such as irrigation and water uptake by plant roots; its quantitative description is usually based on the Richa...Multiple-dimensional water flow in variably saturated soils plays an important role in ecological systems such as irrigation and water uptake by plant roots; its quantitative description is usually based on the Richards' equation. Because of the nonlinearity of the Richards' equation and the complexity of natural soils, most practical simulations rely on numerical solutions with the nonlinearity solved by iterations. The commonly used iterations for solving the nonlinearity are Picard and Newton methods with the former converging at first-order rate and the later at second-order rate. A recent theoretical analysis by the authors, however, revealed that for solving the diffusive flow, the classical Picard method is actually a chord-Newton method, converging at a rate faster than first order; its linear convergence rate is due to the treatment of the gravity term. To improve computational efficiency, a similar chord-Newton method as for solving the diffusive term was proposed to solve the gravity term. Testing examples for one-dimensional flow showed significant improvement. The core of this method is to produce a diagonally dominant matrix in the linear system so as to improve the iteration-toiteration stability and hence the convergence. In this paper, we develop a similar method for multiple-dimensional flow and compare its performance with the classical Picard and Newton methods for water flow in soils characterised by a wide range of van Genuchten parameters.展开更多
The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other...The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other inputs for high yields. Field studies began in 2017 at Marianna, Arkansas to measure moisture dynamics of soybeans during seed fill (R5 to R7) using heat balance stem flow gauges. Sap flow was highly correlated to solar radiation with maximum rates observed during beginning seed fill (R5). A solar radiation efficiency (SRE) value, calculated as hourly sap flow rate per Watt-hour of solar radiation (g/Wh2), is proposed. The SRE relates to crop water demand and hydraulic resistance of the soil-root-stem-leaf-pod-seed pathway. SRE values ranged from 0 - 1.2 g/Wh2. Soil moisture, growth stage, time of day, and weather conditions influenced the SRE, with higher values observed in the morning, late afternoon, and during R5 growth. Peak sap flows of 39 g/h at R5, 25 g/h at R6, and 3 g/h at R7 occurred. The ratio of measured sap flow to estimated crop evapotranspiration was 0.9 to 1.3 during R5 to R6.9 (maximum dry matter), but dropped to 0.2 at R7. Further research is needed to better understand late season reproductive moisture dynamics in soybeans.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used fo...This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO<sub>3</sub>-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH<sub>4</sub>-N), Caesium<sup>137</sup> (Cs<sup>137</sup>) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations;2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations;3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO<sub>3</sub>-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations.展开更多
Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depth...Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depths(10 cm,20 cm,40 cm and 60 cm) in forestland and vegetable plot in the Taihu Lake Basin,China were monitored and analyzed for characteristics of soil moisture variation and its response to several typical rainfall events.The following results were observed.First,great temporal variation of soil moisture was observed in the surface layer than in deeper layer in vegetable plot.In contrast,in forestland,soil moisture had similar variation pattern at different depths.Second,initial soil moisture was an important factor influencing the vertical movement of soil water during rainfall events.In vegetable plot,simultaneous response of soil moisture to rainfall was observed at 10-and 20-cm depths due to fast infiltration when initial soil was relatively dry.However,traditional downward response order occurred when initial soil was relatively wet.Third,critical soil horizon interface was an active zone of soil water accumulation and lateral movement.A less permeable W-B soil horizon interface(40-cm depth) in vegetable plot can create perched water table above it and elevate the soil water content at the corresponding depth.Fourth,the land cover was an effective control factor of soil moisture during small and moderate rainfall events.In the forestland,moderate and small rainfall events had tiny influences on soil moisture due to canopy and surface O horizon interception.Fifth,preferential flow and lateral subsurface interflow were important paths of soil water movement.During large and long duration rainfall events,lateral subsurface flow and preferential flow through surface crack or soil pipe occurred,which recharged the deep soil.However,in more concentrated large storm,surface crack or soil pipe connected by soil macropores was the main contributor to the occurrence of preferential flow.Findings of this study provide a theoretical foundation for sustainable water and fertilizer management and land use planning in the Taihu Lake Basin.展开更多
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and the...As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.展开更多
Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plastic...Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP;Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m;P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.展开更多
In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant ra...In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.展开更多
文摘Multiple-dimensional water flow in variably saturated soils plays an important role in ecological systems such as irrigation and water uptake by plant roots; its quantitative description is usually based on the Richards' equation. Because of the nonlinearity of the Richards' equation and the complexity of natural soils, most practical simulations rely on numerical solutions with the nonlinearity solved by iterations. The commonly used iterations for solving the nonlinearity are Picard and Newton methods with the former converging at first-order rate and the later at second-order rate. A recent theoretical analysis by the authors, however, revealed that for solving the diffusive flow, the classical Picard method is actually a chord-Newton method, converging at a rate faster than first order; its linear convergence rate is due to the treatment of the gravity term. To improve computational efficiency, a similar chord-Newton method as for solving the diffusive term was proposed to solve the gravity term. Testing examples for one-dimensional flow showed significant improvement. The core of this method is to produce a diagonally dominant matrix in the linear system so as to improve the iteration-toiteration stability and hence the convergence. In this paper, we develop a similar method for multiple-dimensional flow and compare its performance with the classical Picard and Newton methods for water flow in soils characterised by a wide range of van Genuchten parameters.
文摘The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other inputs for high yields. Field studies began in 2017 at Marianna, Arkansas to measure moisture dynamics of soybeans during seed fill (R5 to R7) using heat balance stem flow gauges. Sap flow was highly correlated to solar radiation with maximum rates observed during beginning seed fill (R5). A solar radiation efficiency (SRE) value, calculated as hourly sap flow rate per Watt-hour of solar radiation (g/Wh2), is proposed. The SRE relates to crop water demand and hydraulic resistance of the soil-root-stem-leaf-pod-seed pathway. SRE values ranged from 0 - 1.2 g/Wh2. Soil moisture, growth stage, time of day, and weather conditions influenced the SRE, with higher values observed in the morning, late afternoon, and during R5 growth. Peak sap flows of 39 g/h at R5, 25 g/h at R6, and 3 g/h at R7 occurred. The ratio of measured sap flow to estimated crop evapotranspiration was 0.9 to 1.3 during R5 to R6.9 (maximum dry matter), but dropped to 0.2 at R7. Further research is needed to better understand late season reproductive moisture dynamics in soybeans.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
文摘This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO<sub>3</sub>-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH<sub>4</sub>-N), Caesium<sup>137</sup> (Cs<sup>137</sup>) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations;2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations;3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO<sub>3</sub>-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations.
基金Under the auspices of National Natural Science Foundation of China(No.41271109,41030745)Key '135' Project of Chinese Academy of Sciences(No.NIGLAS2012135005)China Postdoctoral Science Foundation(No.2013M540470)
文摘Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depths(10 cm,20 cm,40 cm and 60 cm) in forestland and vegetable plot in the Taihu Lake Basin,China were monitored and analyzed for characteristics of soil moisture variation and its response to several typical rainfall events.The following results were observed.First,great temporal variation of soil moisture was observed in the surface layer than in deeper layer in vegetable plot.In contrast,in forestland,soil moisture had similar variation pattern at different depths.Second,initial soil moisture was an important factor influencing the vertical movement of soil water during rainfall events.In vegetable plot,simultaneous response of soil moisture to rainfall was observed at 10-and 20-cm depths due to fast infiltration when initial soil was relatively dry.However,traditional downward response order occurred when initial soil was relatively wet.Third,critical soil horizon interface was an active zone of soil water accumulation and lateral movement.A less permeable W-B soil horizon interface(40-cm depth) in vegetable plot can create perched water table above it and elevate the soil water content at the corresponding depth.Fourth,the land cover was an effective control factor of soil moisture during small and moderate rainfall events.In the forestland,moderate and small rainfall events had tiny influences on soil moisture due to canopy and surface O horizon interception.Fifth,preferential flow and lateral subsurface interflow were important paths of soil water movement.During large and long duration rainfall events,lateral subsurface flow and preferential flow through surface crack or soil pipe occurred,which recharged the deep soil.However,in more concentrated large storm,surface crack or soil pipe connected by soil macropores was the main contributor to the occurrence of preferential flow.Findings of this study provide a theoretical foundation for sustainable water and fertilizer management and land use planning in the Taihu Lake Basin.
基金supported by the National Natural Science Foundation of China (41271288, 41371273)
文摘As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.
基金supported by the Fundamental Research Funds for the Central Nonprofit Research Institution of Chinese Academy of Forestry (CAFYBB2014MA013)the National Natural Science Foundation of China (31570704)the Major State Basic Research Development Program of China (2013CB429901)
文摘Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP;Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m;P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX-SW-352)
文摘In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.