Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manureri...Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.展开更多
Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts,thereby resulting in negative effects on soil function and urban environm...Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts,thereby resulting in negative effects on soil function and urban environment.Soil samples were collected at 0-20cm depth in Nanjing City,China,in which seven sites were selected for urban open soils,and fourteen sites with similar parent material were selected for the impervious-covered soils,to examine the effect of impervious surface on soil properties and microbial activities,and to determine the most important soil properties associated with soil organic carbon(SOC)transformation in the urban soils covered by impervious surfaces.Soil organic carbon and water-soluble organic carbon(WSOC)concentrations,potential carbon(C)and nitrogen(N)mineralization rates,basal respiration,and physicochemical properties with respect to C transformation were measured.Installation of impervious surface severely affected soil physicochemical properties and microbial activities,e.g.,it significantly decreased total N contents,potential C mineralization and basal respiration rate(P<0.01),while increased pH,clay and Olsen-P concentrations.Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m^(-2),which was significantly lower than the value of 4.52 kg m^(-2)in the open soils(P<0.05).Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil,and it was highly correlated with total N content and potential C mineralization rate.These findings demonstrate that installation of impervious surface in urban area,which will result in decreases of SOC and total N concentrations and soil microbial activities,has certain negative consequences for soil fertility and long-term storage of SOC.展开更多
Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory e...Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils.展开更多
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011809) the National Natural Science Foundation of China (No. 49871044).
文摘Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.
基金Surpported by the National Natural Science Foundation of China(No.41001047)
文摘Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts,thereby resulting in negative effects on soil function and urban environment.Soil samples were collected at 0-20cm depth in Nanjing City,China,in which seven sites were selected for urban open soils,and fourteen sites with similar parent material were selected for the impervious-covered soils,to examine the effect of impervious surface on soil properties and microbial activities,and to determine the most important soil properties associated with soil organic carbon(SOC)transformation in the urban soils covered by impervious surfaces.Soil organic carbon and water-soluble organic carbon(WSOC)concentrations,potential carbon(C)and nitrogen(N)mineralization rates,basal respiration,and physicochemical properties with respect to C transformation were measured.Installation of impervious surface severely affected soil physicochemical properties and microbial activities,e.g.,it significantly decreased total N contents,potential C mineralization and basal respiration rate(P<0.01),while increased pH,clay and Olsen-P concentrations.Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m^(-2),which was significantly lower than the value of 4.52 kg m^(-2)in the open soils(P<0.05).Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil,and it was highly correlated with total N content and potential C mineralization rate.These findings demonstrate that installation of impervious surface in urban area,which will result in decreases of SOC and total N concentrations and soil microbial activities,has certain negative consequences for soil fertility and long-term storage of SOC.
文摘Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils.