Soil column liquid chromatography (SCLC) was developed to determine soil organic carbon adsorption coefficients (E-oc) for chemicals. The uptake by soil of pesticides from water can be conveniently calculated from the...Soil column liquid chromatography (SCLC) was developed to determine soil organic carbon adsorption coefficients (E-oc) for chemicals. The uptake by soil of pesticides from water can be conveniently calculated from the related breakthrough curves (BTC). The nine pesticides chosen for determination in this study are soluble ones, with their water solubility ranging from 62 mg/L to Z mg/L. In comparing with existing methods of K-oc, SCLC possesses rapid, online and accurate characteristics.展开更多
Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations ...Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.展开更多
In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mecha...In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.展开更多
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland...Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.展开更多
The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coup...The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.展开更多
The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental f...The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range.展开更多
Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below...Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below wilting point.This was done by equilibration over NaCl solutions with water potentials of-6.6 to-18.8 MPa at 25℃.When cycled repeatedly through a series of potentials in the range noted previously both soils exhibited a hysteresis effect.The experimental differences in water content between the drying and wetting soils at the same water potential were much too large to be accounted for by failure to allow sufficient time to attain equilibrium as predicted by the exponential decay model.The wetting versus drying differences were relatively small,however,at only 4 mg g-1 or less in absolute terms and about 3% of the mean of wetting and drying,in relative terms.Hysteresis should be a consideration when modeling biological and physical soil processes at water contents below the wilting point,where small differences in water content result in large potential energy changes.展开更多
Humans spend 64% - 94% of their time indoors;therefore, indoor air quality is very important for potential exposure to volatile organic compounds (VOC). The source of VOC in the subsurface may come from accidental or ...Humans spend 64% - 94% of their time indoors;therefore, indoor air quality is very important for potential exposure to volatile organic compounds (VOC). The source of VOC in the subsurface may come from accidental or intentional releases, leaking landfills or leaking underground and above-ground storage tanks. Once these contaminants are present near or beneath buildings, they may move as a vapour through soil gas and enter the building. A large number of vapour intrusion (VI) algorithms have been published in peer-reviewed publications that link indoor VOC concentrations to the contamination of soils. These models typically include phase partitioning calculations of VOC based on Henry’s law to estimate the concentration of a particular contaminant in soil gas. This paper presents the results from a series of laboratory experiments concerning the use of the Henry’s Law constant for the calculation of toluene concentrations in equilibrium between ground water and soil air. A series of column experiments were conducted with various toluene concentrations in artificial (ground) water to contrast the predicted and observed (soil) air concentrations. The experiments which exclude soil material show a toluene fugacity behaviour roughly in line with Henry’s law whereas the experiments which include soil material result in equilibrium soil concentrations which were around one order-of-magnitude lower than was expected from a Henry Law-based estimation. It is concluded that for toluene inclusion of Henry’s Law in VI algorithms does not provide an adequate description of volatilisation in soils and may lead to an overestimation of health risk. Instead, a model based on a simple description of the relevant intermolecular interactions could be explored.展开更多
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and...Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.展开更多
Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using re...Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure.The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading.What is more,the pore water pressure coefficient of mucky soil is less than 1.As the compactness of soil increases and moisture content reduces,the value of B reduces.There is a staggered dissipating in the process of consolidation,in which it is a mutate point when U/P is 80%.It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.展开更多
With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water conte...With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water content measurement using the traditional method is as high as 20. 78%,which is no longer suitable for contaminated soil. Through a series of tests to measure the loss coefficient of diesel in the drying time,the authors finally proposed a modified calculation formula for test samples. The results show that the maximum relative error calculated by using the modified formula is 0. 96%,far lower than that of traditional formula,which can provide accurate data for further study of diesel contaminated soil.展开更多
The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily s...The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available soil water holding capacity and soil depth information for all of California was also developed from the USDA-NRCS SSURGO database. The Cal-SIMETAW program also has the ability to generate daily weather data from monthly mean values for use in studying climate change scenarios and their possible impacts on water demand in the state. The key objective of this project is to improve the accuracy of water use estimates for the California Water Plan (CWP), which provides a comprehensive report on water supply, demand, and management in California. In this paper, we will discuss the model and how it determines ETaw for use in water resources planning.展开更多
Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep so...Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep soil profile were measured by a conservative tracer experiment using 25 undisturbed soil cores (20 cm long and 7 cm diameter for each) continuously sampled from the surface downward to the depth of 500 cm in the Loess Plateau of China. The solute transport breakthrough curves (BTCs) were analyzed in terms of the convection-dispersion equation (CDE) and the mobile-immobile model (MIM). Average pore-water velocity and dispersion coefficient (or effective dispersion coefficient) were calculated using the CDE and MIM. Basic soil properties and water infiltration parameters were also determined to explore their influence on the solute transport parameters. Both pore-water velocity and dispersion coefficient (or effective dispersion coefficient) generally decreased with increasing depth, and the dispersivity fluctuated along the soil profile. There was a good linear correlation between log-transformed pore-water velocity and dispersion coefficient, with a slope of about 1.0 and an average dispersivity of 0.25 for the entire soil profile. Generally speaking, the soil was more homogeneous along the soil profile. Our results also show that hydrodynamic dispersion is the dominant mechanism of solute transport of loess soils in the study area.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific pa...The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.展开更多
To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that...To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.展开更多
A utility equipment used in soil science is designed and installed.The equipment can be used in research pro- grams of soil water and solute transport.Pressure in pressure chamber of the equipment in which a tested so...A utility equipment used in soil science is designed and installed.The equipment can be used in research pro- grams of soil water and solute transport.Pressure in pressure chamber of the equipment in which a tested soil sam- ple is laid can be adjusted exactly so that we can determine the water content of soil sample.With the equipment we can not only study the problems related water movement in soil but also measure some solute,such as cadmi- um,plumbum and so on,adsorption on surface of soil in saturated and unsaturated state.As an illustration of the use of the equipment,we give the isothermal of cupric ion adsorption in soil.This equipment can be used in the re- search work and application of soil science.展开更多
基金Bayer AG and Chinese Academy of Agricultural Sciences for kindly supplying the pesticides.
文摘Soil column liquid chromatography (SCLC) was developed to determine soil organic carbon adsorption coefficients (E-oc) for chemicals. The uptake by soil of pesticides from water can be conveniently calculated from the related breakthrough curves (BTC). The nine pesticides chosen for determination in this study are soluble ones, with their water solubility ranging from 62 mg/L to Z mg/L. In comparing with existing methods of K-oc, SCLC possesses rapid, online and accurate characteristics.
基金funded by the Fundamental Research Funds for the Central Universities (2016ZCQ06)the Forestry Industry Research Special Funds for Public Welfare Projects (201504402)the Application Technology of Seaweed Fertilizer Based on Desertification Control and Saline-alkili Soil Improvement (2016HXFWSBXY002)
文摘Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.
基金Projects(51878064, 51378072) supported by the National Natural Science Foundation of ChinaProjects(300102218408, 300102219108) supported by the Fundamental Research Funds for the Central Universities, China。
文摘In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.
文摘Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.
文摘The coupling relation exists in water and soil conser-vation and economic-social development. The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method. Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the re-lationship degree. The article obtains the relationship of soil and water conservation investments and all kinds of incomes. Finally, it analyzes the important meaning in socio-economic development of water and soil conservation.
基金the National Natural Science Fund of China (Grant Nos. 51779191, 51809199)
文摘The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range.
文摘Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below wilting point.This was done by equilibration over NaCl solutions with water potentials of-6.6 to-18.8 MPa at 25℃.When cycled repeatedly through a series of potentials in the range noted previously both soils exhibited a hysteresis effect.The experimental differences in water content between the drying and wetting soils at the same water potential were much too large to be accounted for by failure to allow sufficient time to attain equilibrium as predicted by the exponential decay model.The wetting versus drying differences were relatively small,however,at only 4 mg g-1 or less in absolute terms and about 3% of the mean of wetting and drying,in relative terms.Hysteresis should be a consideration when modeling biological and physical soil processes at water contents below the wilting point,where small differences in water content result in large potential energy changes.
文摘Humans spend 64% - 94% of their time indoors;therefore, indoor air quality is very important for potential exposure to volatile organic compounds (VOC). The source of VOC in the subsurface may come from accidental or intentional releases, leaking landfills or leaking underground and above-ground storage tanks. Once these contaminants are present near or beneath buildings, they may move as a vapour through soil gas and enter the building. A large number of vapour intrusion (VI) algorithms have been published in peer-reviewed publications that link indoor VOC concentrations to the contamination of soils. These models typically include phase partitioning calculations of VOC based on Henry’s law to estimate the concentration of a particular contaminant in soil gas. This paper presents the results from a series of laboratory experiments concerning the use of the Henry’s Law constant for the calculation of toluene concentrations in equilibrium between ground water and soil air. A series of column experiments were conducted with various toluene concentrations in artificial (ground) water to contrast the predicted and observed (soil) air concentrations. The experiments which exclude soil material show a toluene fugacity behaviour roughly in line with Henry’s law whereas the experiments which include soil material result in equilibrium soil concentrations which were around one order-of-magnitude lower than was expected from a Henry Law-based estimation. It is concluded that for toluene inclusion of Henry’s Law in VI algorithms does not provide an adequate description of volatilisation in soils and may lead to an overestimation of health risk. Instead, a model based on a simple description of the relevant intermolecular interactions could be explored.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFD1500501)National Natural Science Foundation of China(No.41971066)+1 种基金Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)High Tech Fund Project of S&T Cooperation Between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.
文摘Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure.The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading.What is more,the pore water pressure coefficient of mucky soil is less than 1.As the compactness of soil increases and moisture content reduces,the value of B reduces.There is a staggered dissipating in the process of consolidation,in which it is a mutate point when U/P is 80%.It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.
文摘With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water content measurement using the traditional method is as high as 20. 78%,which is no longer suitable for contaminated soil. Through a series of tests to measure the loss coefficient of diesel in the drying time,the authors finally proposed a modified calculation formula for test samples. The results show that the maximum relative error calculated by using the modified formula is 0. 96%,far lower than that of traditional formula,which can provide accurate data for further study of diesel contaminated soil.
基金supported and funded by the California Department of Water Resources(DWR)
文摘The California Simulation of Evapotranspiration of Applied Water (CaI-SIMETAW) model is a new tool developed by the California Department of Water Resources and the University of California, Davis to perform daily soil water balance and determine crop evapotranspiration (ETo), evapotranspiration of applied water (ETaw), and applied water (AW) for use in California water resources planning. ETaw is a seasonal estimate of the water needed to irrigate a crop assuming 100% irrigation efficiency. The model accounts for soils, crop coefficients, rooting depths, seepage, etc. that influence crop water balance. It provides spatial soil and climate information and it uses historical crop and land-use category information to provide seasonal water balance estimates by combinations of detailed analysis unit and county (DAU/County) over Califomia. The result is a large data base of ETc and ETaw that will be used to update information in the new California Water Plan (CWP). The application uses the daily climate data, i.e., maximum (Tx) and minimum (Tn) temperature and precipitation (Pcp), which were derived from monthly USDA-NRCS PRISM data (PRISM Group 2011) and daily US National Climate Data Center (NCDC) climate station data to cover California on a 4 kmx4 km change grid spacing. The application uses daily weather data to determine reference evapotranspiration (ETo), using the Hargreaves-Samani (HS) equation (Hargreaves and Samani 1982, 1985). Because the HS equation is based on temperature only, ETo from the HS equation were compared with CIMIS ETo at the same locations using available CIMIS data to determine correction factors to estimate CIMIS ETo from the HS ETo to account for spatial climate differences. CaI-SIMETAW also employs near real-time reference evapotranspiration (ETo) information from Spatial CIMIS, which is a model that combines weather station data and remote sensing to provide a grid of ETo information. A second database containing the available soil water holding capacity and soil depth information for all of California was also developed from the USDA-NRCS SSURGO database. The Cal-SIMETAW program also has the ability to generate daily weather data from monthly mean values for use in studying climate change scenarios and their possible impacts on water demand in the state. The key objective of this project is to improve the accuracy of water use estimates for the California Water Plan (CWP), which provides a comprehensive report on water supply, demand, and management in California. In this paper, we will discuss the model and how it determines ETaw for use in water resources planning.
基金supported by the National Natural Science Foundation of China(41571130081,41530854)
文摘Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep soil profile were measured by a conservative tracer experiment using 25 undisturbed soil cores (20 cm long and 7 cm diameter for each) continuously sampled from the surface downward to the depth of 500 cm in the Loess Plateau of China. The solute transport breakthrough curves (BTCs) were analyzed in terms of the convection-dispersion equation (CDE) and the mobile-immobile model (MIM). Average pore-water velocity and dispersion coefficient (or effective dispersion coefficient) were calculated using the CDE and MIM. Basic soil properties and water infiltration parameters were also determined to explore their influence on the solute transport parameters. Both pore-water velocity and dispersion coefficient (or effective dispersion coefficient) generally decreased with increasing depth, and the dispersivity fluctuated along the soil profile. There was a good linear correlation between log-transformed pore-water velocity and dispersion coefficient, with a slope of about 1.0 and an average dispersivity of 0.25 for the entire soil profile. Generally speaking, the soil was more homogeneous along the soil profile. Our results also show that hydrodynamic dispersion is the dominant mechanism of solute transport of loess soils in the study area.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.
基金Supported by the National Natural Science Foundation of China(50779030,50879044,2008BAB29B03)the National Defenses Bureau(838)
文摘The establishment of energy balance equation is necessary to study the thermo-mechanical properties of unsaturated soils.To solve this equation,the determination of two fundamental parameters as volumetric specific parameter and thermal conductivity coefficient is essential.In this paper,the effective thermal conductivity coefficient of dry soil grain is analyzed for soils with different compositions,and the thermo-mechanical properties of porous media with water and gas are studied by considering the soil water retention curve(SWRC).Different methods,i.e.volumetric average method,self-consistent method,Hashin-Strikman method,are employed to calculate thermal conductivity coefficients,and a new method is proposed to determine the thermo-mechanical parameters.Comparison of the results obtained by different methods shows that the proposed method is in a good agreement with the experimental results and is suitable for describing the main properties of the thermo-mechanical behaviors of soils.The relationship between the SWRC and the seepage curve is further studied by the natural proportional rule.The characteristics of the SWRC,its differential coefficient and the seepage curve,are investigated by considering the physico-mechanical mechanism;the limit scopes of the indices of the SWRC and the seepage curve are also given.
基金Under the auspices of National Natural Science Foundation of China(No.51279077,91125017)
文摘To simulate the soil moisture variation in cropland, a two-parameter exponential recession model was derived to depict the recession process of soil moisture in the root zone. The model is based on the assumption that the recession rate of soil water is proportional to the potential evapotranspiration rate and the difference of soil water content and steady soil water content. Two parameters in this model are soil texture-dependent recession constant and steady soil water content. The model was calibrated and validated with measured soil water data at two experiment sites in North China with different soil textures and cropping systems. Coefficients of determination between measured and model simulated soil water content were all greater than 0.7, indicating that both models gave satisfactory simulation results. Results showed that values of two parameters mentioned above are both larger for finer soil than those for coarser soil. At the same potential evapotranspiration rate and soil water content, the recession rate of finer soil is usually lower than that of coarser soil. The proposed model can be used in irrigation management to predict approximate date for irrigation, as well as be embedded into watershed hydrological models to estimate the antecedent precipitation index.
文摘A utility equipment used in soil science is designed and installed.The equipment can be used in research pro- grams of soil water and solute transport.Pressure in pressure chamber of the equipment in which a tested soil sam- ple is laid can be adjusted exactly so that we can determine the water content of soil sample.With the equipment we can not only study the problems related water movement in soil but also measure some solute,such as cadmi- um,plumbum and so on,adsorption on surface of soil in saturated and unsaturated state.As an illustration of the use of the equipment,we give the isothermal of cupric ion adsorption in soil.This equipment can be used in the re- search work and application of soil science.