The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,r...The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,rectangular,and sub-rectangular tunnels subjected to seismic loadings has already been studied in the literature.In the present research,two case scenarios of circular,rectangular tunnels and four sub-rectangular shaped tunnels,with similar cross-section areas,were adopted to perform a comprehensive numerical investigation.The purpose of the study was to determine the mechanical behavior of tunnels of different shapes,depending upon seismic conditions.Analyses were performed by considering the influence of soil-lining interaction,soil parameters,and lining thickness,as well as lining rigidity.Computations were performed for no-slip and full-slip conditions.The results indicate that the tunnel shape design is of great importance when regarding the mechanical behavior of the surrounding soil.This concerns no-slip as well as full-slip soil-lining interaction,especially when the lining is subjected to seismic loading.Moreover,it is shown that changes in incremental bending moments for circular,rectangular and sub-rectangular tunnels that depend upon the soil-lining interaction conditions differ significantly.展开更多
This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio...This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and inte...The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.展开更多
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces...The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.展开更多
The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation ...The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.展开更多
Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is oft...Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions.In this letter,we report a capacitive excitation PFM(ce-PFM)to minimize the electrostatic interactions.The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM.The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes,with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM.These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern,and it can be easily implemented in conventional atomic force microscope(AFM)setup to probe true piezoelectricity at the nanoscale.展开更多
Haptic interaction plays an important role in the virtual reality technology,which let a person not only view the 3D virtual environment but also realistically touch the virtual environment.As a key part of haptic int...Haptic interaction plays an important role in the virtual reality technology,which let a person not only view the 3D virtual environment but also realistically touch the virtual environment.As a key part of haptic interaction,force feedback has become an essential function for the haptic interaction.Therefore,multi-dimensional force sensors are widely used in the fields of virtual reality and augmented reality.In this paper,some conventional multi-dimensional force sensors based on different measurement principles,such as resistive,capacitive,piezoelectric,are briefly introduced.Then the mechanical structures of the elastic body of multi-dimensional force sensors are reviewed.It is obvious that the performance of the multi-dimensional force sensor is mainly dependent upon the mechanical structure of elastic body.Furthermore,the calibration process of the force sensor is analyzed,and problems in calibration are discussed.Interdimensional coupling error is one of the main factors affecting the measurement precision of the multi-dimensional force sensors.Therefore,reducing or even eliminating dimensional coupling error becomes a fundamental requirement in the design of multi-dimensional force sensors,and the decoupling state-of-art of the multi-dimensional force sensors are introduced in this paper.At last,the trends and current challenges of multi-dimensional force sensing technology are proposed.展开更多
The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed...The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.展开更多
Classical electrodynamics foresees that the effective interaction force between a moving charge and a magnetic dipole is modified by the time-varying total momentum of the interaction fields. We derive the equations o...Classical electrodynamics foresees that the effective interaction force between a moving charge and a magnetic dipole is modified by the time-varying total momentum of the interaction fields. We derive the equations of motion of the particles from the total stress-energy tensor, assuming the validity of Maxwell’s equations and the total momentum conservation law. Applications to the effects of Aharonov–Bohm type show that the observed phase shift may be due to the relative lag between interfering particles caused by the effective local force.展开更多
Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two...Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.展开更多
Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of ...Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.展开更多
The work is devoted to the demonstration of the possibility of applying the formulas of information handling obtained in the theory of non-force interaction for the natural language processing. These formulas were obt...The work is devoted to the demonstration of the possibility of applying the formulas of information handling obtained in the theory of non-force interaction for the natural language processing. These formulas were obtained in computer experiments in modelling the movement and interaction of material objects by changing the amount of information that triggers this movement. The hypothesis, objective and tasks of the experimental research were defined. The methods and software tools were developed to conduct the experiments. To compare different results of the simulation of the processes in a human brain during speech production, there was a range of methods proposed to calculate the estimate of sequence of fragments of natural language texts including the methods based on linear approximation. The experiments confirmed that the formulas of information handling obtained in the theory of non-force interaction reflect the processes of language formation. It is shown that the offered approach can successfully be used to create systems of reactive artificial intelligence machines. Experimental and, presented in this work, practical results constitute that the non-force (informational) interaction formulae are generally valid.展开更多
Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due t...Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due to its outstanding cross-platform versatility.In this paper,we present a novel interactive force observer,which possesses superior dynamic tracking performance.We propose a dynamic cutoff frequency configuration method to replace the conventional fixed cutoff frequency setting in the traditional momentum-based observer(MBO).This method achieves a balance between rapid tracking and noise suppression.Moreover,to mitigate the phase lag introduced by the low-pass filtering,we cascaded a Newton Predictor(NP)after MBO,which features simple computation and adaptability.The precision analysis of this method has been presented.We conducted extensive experiments on the point-foot biped robot BRAVER to validate the performance of the proposed algorithm in both simulation and physical prototype.展开更多
In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elas...In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.展开更多
The study of multiphase flow consisting of liquid and air bubbles has been attracting the interest of many researchers. Numerical methods for such a system are, however, facing difficulty in numerical accuracy and a h...The study of multiphase flow consisting of liquid and air bubbles has been attracting the interest of many researchers. Numerical methods for such a system are, however, facing difficulty in numerical accuracy and a heavy computational load. In this paper, we made corrections to the modified force-coupling method in our previous papers and applied it to the numerical studies of a single air bubble rising near a vertical wall and two interacting air bubbles rising in line in quiescent liquid. Corrections were made to the effective ranges of the force-coupling method. The calculation results showed that the lift force acting on an air bubble obtained by the experimental data was more accurately reproduced than those by our previous method. We accurately calculated the time evolution of the velocities of interacting two air bubbles rising in line obtained in the previous experiments and resolved the physical mechanism of the relative movement of two bubbles. We also found the present method is much quicker and needs much smaller memory capacity than other methods, such as the volume of fluid method.展开更多
To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure di...To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure distribution on stator blades is measured under the conditions of different axial spacing between the rotor and the stator, different rotating speeds and an extensive range of the mass flow. Amplitudes and frequencies of aerodynamic forces are analyzed by the Fourier transform. Experimental results show that under the effect of the rotor wake, the dominant frequencies of pressure fluctuations on stator blades are the rotor blade passing frequency (BPF) and its harmonics. The higher harmonics of the rotor BPF in the fore part of the suction side are more prominent than that in the other parts of the stator blade. Otherwise, fluctuations of the pressure and the aerodynamic force on stator blades vary with the mass flow, the rotating speed and the axial spacing between the rotor and the stator.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam forma...Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam formation,adsorption,and fouling and anti-fouling phenomena.These interactions at the molecular,nano-,and micro scale significantly influence and determine the macroscopic performance and efficiency of related engineering processes.Understanding the intermolecular and surface interactions in engineering processes is of both fundamental and practical importance,which not only improves production technologies,but also provides valuable insights into the development of new materials.In this review,the typical intermolecular and surface interactions involved in various engineering processes,including Derjaguin–Landau–Verwey–Overbeek(DLVO)interactions(i.e.,van der Waals and electrical doublelayer interactions)and non-DLVO interactions,such as steric and hydrophobic interactions,are first introduced.Nanomechanical techniques such as atomic force microscopy and surface forces apparatus for quantifying the interaction forces of molecules and surfaces in complex fluids are briefly introduced.Our recent progress on characterizing the intermolecular and surface interactions in several engineering systems are reviewed,including mineral flotation,petroleum engineering,wastewater treatment,and energy storage materials.The correlation of these fundamental interaction mechanisms with practical applications in resolving engineering challenges and the perspectives of the research field have also been discussed.展开更多
基金supported by Vietnam Ministry of Education and Training under Grant No. B2022-MDA-06
文摘The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,rectangular,and sub-rectangular tunnels subjected to seismic loadings has already been studied in the literature.In the present research,two case scenarios of circular,rectangular tunnels and four sub-rectangular shaped tunnels,with similar cross-section areas,were adopted to perform a comprehensive numerical investigation.The purpose of the study was to determine the mechanical behavior of tunnels of different shapes,depending upon seismic conditions.Analyses were performed by considering the influence of soil-lining interaction,soil parameters,and lining thickness,as well as lining rigidity.Computations were performed for no-slip and full-slip conditions.The results indicate that the tunnel shape design is of great importance when regarding the mechanical behavior of the surrounding soil.This concerns no-slip as well as full-slip soil-lining interaction,especially when the lining is subjected to seismic loading.Moreover,it is shown that changes in incremental bending moments for circular,rectangular and sub-rectangular tunnels that depend upon the soil-lining interaction conditions differ significantly.
基金Key Project of the National Natural Science Foundation of China (42330611)National Natural Science Foundation of China (42105008)。
文摘This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金Project(50974134)supported by the National Natural Science Foundation of China
文摘The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.
基金Project(2014BAB01B03) supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of China Project(51774286) supported by the National Natural Science Foundation of China Project(BK20150192) supported by the Natural Science Foundation of Jiaaagsu Province, China
文摘The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.
基金the Knowledge-based Ship-designHyper-integrated Platform (KSHIP) of Ministry ofEducation, China
文摘The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.
基金We acknowledge the National Key Research and Development Program of China(Grant 2016YFA0201001)the National Natural Science Foundation of China(Grants 11372268,11627801,and 1472236)+2 种基金Unite State National Science Foundation(Grant CBET-1435968)the Leading Talents Program of Guangdong Province(Grant 2016LJ06C372)Shenzhen Science and Technology Innovation Committee(Grant KQJSCX20170331162214306).
文摘Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions.In this letter,we report a capacitive excitation PFM(ce-PFM)to minimize the electrostatic interactions.The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM.The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes,with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM.These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern,and it can be easily implemented in conventional atomic force microscope(AFM)setup to probe true piezoelectricity at the nanoscale.
基金Supported by Natural Science Foundation of China(U1713210).
文摘Haptic interaction plays an important role in the virtual reality technology,which let a person not only view the 3D virtual environment but also realistically touch the virtual environment.As a key part of haptic interaction,force feedback has become an essential function for the haptic interaction.Therefore,multi-dimensional force sensors are widely used in the fields of virtual reality and augmented reality.In this paper,some conventional multi-dimensional force sensors based on different measurement principles,such as resistive,capacitive,piezoelectric,are briefly introduced.Then the mechanical structures of the elastic body of multi-dimensional force sensors are reviewed.It is obvious that the performance of the multi-dimensional force sensor is mainly dependent upon the mechanical structure of elastic body.Furthermore,the calibration process of the force sensor is analyzed,and problems in calibration are discussed.Interdimensional coupling error is one of the main factors affecting the measurement precision of the multi-dimensional force sensors.Therefore,reducing or even eliminating dimensional coupling error becomes a fundamental requirement in the design of multi-dimensional force sensors,and the decoupling state-of-art of the multi-dimensional force sensors are introduced in this paper.At last,the trends and current challenges of multi-dimensional force sensing technology are proposed.
文摘The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.
基金Supported partially by the CDCHT(ULA,Mérida,Venezuela)。
文摘Classical electrodynamics foresees that the effective interaction force between a moving charge and a magnetic dipole is modified by the time-varying total momentum of the interaction fields. We derive the equations of motion of the particles from the total stress-energy tensor, assuming the validity of Maxwell’s equations and the total momentum conservation law. Applications to the effects of Aharonov–Bohm type show that the observed phase shift may be due to the relative lag between interfering particles caused by the effective local force.
文摘Here, we initially introduced and demonstrated two principles: orientation OR principle and attraction AT principle of electrical dipoles. The OR principle stipulates that any two electrical dipoles P1A, P1B, from two bodies A and B, at any distance in the free state each, will be reciprocally oriented parallel and in the same sense if the electrical interaction forces F between them are of decreasing type with distance r. If the electrical interaction forces F are of increasing type with distance, the two dipoles will be reciprocally oriented parallel but on the opposite sense. The AT principle stipulate that any two electrical dipoles P1A, P1B, at any distance in the free state each, will present always a reciprocal force of attraction FD in both cases of orientation accordingly to OR principle in case of any type of electrical force F decreasing or increasing with distance. These findings may complete our previous work where we found that FD force, between two electrical dipoles P1A, P1B considered at atomic and nuclear level, is in fact the actual gravitation Newton force FN. The paper must be considered together with this work for more consistency.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019B05the Heilongjiang Provincial Natural Science Foundation of China under Grant No.LH2019E098,the National Natural Science Foundation of China under Grant Nos.51878631 and 51678544the National Key Research and Development Program of China under Grant Nos.2017YFC1500605 and 2018YFC1504602-01。
文摘Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests.
文摘The work is devoted to the demonstration of the possibility of applying the formulas of information handling obtained in the theory of non-force interaction for the natural language processing. These formulas were obtained in computer experiments in modelling the movement and interaction of material objects by changing the amount of information that triggers this movement. The hypothesis, objective and tasks of the experimental research were defined. The methods and software tools were developed to conduct the experiments. To compare different results of the simulation of the processes in a human brain during speech production, there was a range of methods proposed to calculate the estimate of sequence of fragments of natural language texts including the methods based on linear approximation. The experiments confirmed that the formulas of information handling obtained in the theory of non-force interaction reflect the processes of language formation. It is shown that the offered approach can successfully be used to create systems of reactive artificial intelligence machines. Experimental and, presented in this work, practical results constitute that the non-force (informational) interaction formulae are generally valid.
基金supported in part by the National Key Research and Development Program of China(2022YFB4701504)the National Natural Science Foundation of China(62373223 and 62203268)Youth Innovation and Technology Support Plan for Higher Education Institutions in Shandong Province(2023KJ029).
文摘Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due to its outstanding cross-platform versatility.In this paper,we present a novel interactive force observer,which possesses superior dynamic tracking performance.We propose a dynamic cutoff frequency configuration method to replace the conventional fixed cutoff frequency setting in the traditional momentum-based observer(MBO).This method achieves a balance between rapid tracking and noise suppression.Moreover,to mitigate the phase lag introduced by the low-pass filtering,we cascaded a Newton Predictor(NP)after MBO,which features simple computation and adaptability.The precision analysis of this method has been presented.We conducted extensive experiments on the point-foot biped robot BRAVER to validate the performance of the proposed algorithm in both simulation and physical prototype.
文摘In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.
文摘The study of multiphase flow consisting of liquid and air bubbles has been attracting the interest of many researchers. Numerical methods for such a system are, however, facing difficulty in numerical accuracy and a heavy computational load. In this paper, we made corrections to the modified force-coupling method in our previous papers and applied it to the numerical studies of a single air bubble rising near a vertical wall and two interacting air bubbles rising in line in quiescent liquid. Corrections were made to the effective ranges of the force-coupling method. The calculation results showed that the lift force acting on an air bubble obtained by the experimental data was more accurately reproduced than those by our previous method. We accurately calculated the time evolution of the velocities of interacting two air bubbles rising in line obtained in the previous experiments and resolved the physical mechanism of the relative movement of two bubbles. We also found the present method is much quicker and needs much smaller memory capacity than other methods, such as the volume of fluid method.
文摘To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure distribution on stator blades is measured under the conditions of different axial spacing between the rotor and the stator, different rotating speeds and an extensive range of the mass flow. Amplitudes and frequencies of aerodynamic forces are analyzed by the Fourier transform. Experimental results show that under the effect of the rotor wake, the dominant frequencies of pressure fluctuations on stator blades are the rotor blade passing frequency (BPF) and its harmonics. The higher harmonics of the rotor BPF in the fore part of the suction side are more prominent than that in the other parts of the stator blade. Otherwise, fluctuations of the pressure and the aerodynamic force on stator blades vary with the mass flow, the rotating speed and the axial spacing between the rotor and the stator.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
文摘Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam formation,adsorption,and fouling and anti-fouling phenomena.These interactions at the molecular,nano-,and micro scale significantly influence and determine the macroscopic performance and efficiency of related engineering processes.Understanding the intermolecular and surface interactions in engineering processes is of both fundamental and practical importance,which not only improves production technologies,but also provides valuable insights into the development of new materials.In this review,the typical intermolecular and surface interactions involved in various engineering processes,including Derjaguin–Landau–Verwey–Overbeek(DLVO)interactions(i.e.,van der Waals and electrical doublelayer interactions)and non-DLVO interactions,such as steric and hydrophobic interactions,are first introduced.Nanomechanical techniques such as atomic force microscopy and surface forces apparatus for quantifying the interaction forces of molecules and surfaces in complex fluids are briefly introduced.Our recent progress on characterizing the intermolecular and surface interactions in several engineering systems are reviewed,including mineral flotation,petroleum engineering,wastewater treatment,and energy storage materials.The correlation of these fundamental interaction mechanisms with practical applications in resolving engineering challenges and the perspectives of the research field have also been discussed.