As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-r...As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.展开更多
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat...Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.展开更多
Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the...Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.展开更多
Significant epidemiological research has revealed that exposure to air pollution is substantially associated with numerous detrimental health consequences^([1-3]).The negative health effects of individual air pollutan...Significant epidemiological research has revealed that exposure to air pollution is substantially associated with numerous detrimental health consequences^([1-3]).The negative health effects of individual air pollutants(e.g.,fine particulate matter:PM_(2.5);nitrogen dioxide:NO_(2);carbon monoxide,CO;or ozone:O_(3))have been widely explored^([4]).However,humans are constantly exposed to multipollutant mixtures in real life,and biological responses to inhaled pollutants are likely to depend on the interplay of pollutant mixtures.Therefore,it is critical and imperative to explore the joint effects of multipollutant mixtures on human beings.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ...The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management...Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management for the establishment of grass-legume mixtures.However,a common concern is that intensive tillage may alter soil characteristics,leading to losses in soil organic carbon(SOC).We investigated the plant community composition,SOC,soil microbial biomass carbon(MBC),soil enzyme activities,and soil properties in long-term perennial grass-legume mixtures under two different tillage intensities(once and twice)as well as in a fenced grassland(FG).The establishment of grass-legume mixtures increased plant species diversity and plant community coverage,compared with FG.Compared with once tilled grassland(OTG),twice tilled grassland(TTG)enhanced the coverage of high-quality leguminous forage species by 380.3%.Grass-legume mixtures with historical tillage decreased SOC and dissolved organic carbon(DOC)concentrations,whereas soil MBC concentrations in OTG and TTG increased by 16.0%and 16.4%,respectively,compared with FG.TTG significantly decreased the activity of N-acetyl-β-D-glucosaminidase(NAG)by 72.3%,whereas soil enzymeβ-glucosidase(βG)in OTG and TTG increased by 55.9%and 27.3%,respectively,compared with FG.Correlation analysis indicated a close association of the increase in MBC andβG activities with the rapid decline in SOC.This result suggested that MBC was a key driving factor in soil carbon storage dynamics,potentially accelerating soil carbon cycling and facilitating biogeochemical cycling.The establishment of grass-legume mixtures effectively improves forage quality and boosts plant diversity,thereby facilitating the restoration of degraded grasslands.Although tillage assists in establishing legume-grass mixtures by controlling weeds,it accelerates microbial activity and organic carbon decomposition.Our findings provide a foundation for understanding the process and effectiveness of restoration management in degraded grasslands.展开更多
It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity...It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.展开更多
Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective ...Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective means to prevent the instability of soilrock mixture slope.In this paper,a centrifuge model test was conducted to investigate the stress distribution of the h-type anti-slide pile and the evolution process of soil arching during the loading.A numerical simulation model was built based on the similar relationship between the centrifuge model and the prototype to investigate the influence factors of the pile spacing,anchored depth,and crossbeam stiffness,and some recommendations were proposed for its application.The results show that the bending moment distribution of the rear pile exhibits Wshaped,while for the front pile,its distribution resembles V-shaped.The soil arching evolution process during loading is gradually dissipated from bottom to top and from far to near.During the loading,the change of bending moment can be divided into three stages,namely,the stabilization stage,the slow growth stage,and the rapid growth stage.In engineering projects,the recommended values of the pile spacing,anchored depth,and crossbeam stiffness are 4.0d,2.0d,and 2.0EI,where d and EI are the diameter and bending stiffness of the h-type anti-slide pile respectively.展开更多
Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, wat...Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, water content and particle sizes. In this research, a series of large-scale direct shear tests with different water contents and different grain-size distributions were conducted to study the influence of the aforementioned factors on the mechanical properties of the S-RMs. Due to the effect of the rock blocks' breakage in the S-RMs, the relationship between the shear strength and the vertical stress of S-RM follows a power law instead of a linear one. It is found that there exists a threshold value for the vertical stress during the shearing process,below which the soil strength is mainly determined by the inter-locking of particles and the re-arrangement of meso-structure,and otherwise large-sized rock blocks are gradually broken into smaller fragments, resulting in a decrease in the soil strength.The shear rate can also significantly influence the degree of particle breakage and the meso-structural rearrangement of the SRMs, namely, under low shear rate, the particles of the samples are fully broken resulting in enhanced macro-strength. As a result, the lower the shear rate, the higher the macroscopic strength. So under unsaturated conditions, the water content will affect the strength of the S-RMs by reducing the strength of rock blocks. As the water content increases, the soil strength decreases gradually, and assumes a moderate value when the water content reaches 8%. At the same water content, the soil strength increases with the sizes of large rock blocks. For the occlusion, breakage and structure re-arrangement of the oversized rock blocks inside S-RM, which have a huge influence on the mechanical characteristics of the samples.展开更多
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv...The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.展开更多
The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fi...The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fine-grained soils like clay and silty soils,but the SWCC model for grinding soil-rock mixture(SRM)is less studied.Considering that the SRM is in a certain compaction state in the actual project,this study established a surface model with three variables of coupling compaction degree-substrate suction-moisture content based on the Cavalcante-Zornberg soil-water characteristic curve model.Then,the influence of each fitting parameter on the curve was analyzed.For the common SRM,the soil-water characteristic test was conducted.Moreover,the experimental measurements exhibit remarkable consistency with the mode surface.The analysis shows that the surface model intuitively describes the soil-water characteristics of grinding SRM,which can provide the SWCC of soils with bimodal pore characteristics under specific compaction degrees.Furthermore,it can reflect the influence of compaction degrees on the SWCC of rock-soil mass and has a certain prediction effect.The SWCC of SRM with various soil-rock ratios have a double-step shape.With the increase in compaction degree,the curves as a whole tend toward decreasing mass moisture content.The curve changes are mainly concentrated in the large pore section.展开更多
The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided q...The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided qualitative analysis of the changes in pore or strength of soil-rock mixture under freeze-thaw cycles.In contrast,few studies focused on the quantitative evaluation of pore change and the relationship between the freeze-thaw strength deterioration and pore change of soil-rock mixture.This study aims to explore the correlation between the micro-pore evolution characteristics and macro-mechanics of a soil-rock mixture after frequent freeze-thaw cycles during the construction and subsequent operation in a permafrost region.The pore characteristics of remolded soil samples with different rock contents(i.e.,25%,35%,45%,and 55%)subjected to various freeze-thaw cycles(i.e.,0,1,3,6,and 10)were quantitatively analyzed using nuclear magnetic resonance(NMR).Shear tests of soil-rock samples under different normal pressures were carried out simultaneously to explore the correlation between the soil strength changes and pore characteristics.The results indicate that with an increase in the number of freeze-thaw cycles,the cohesion of the soil-rock mixture generally decreases first,then increases,and finally decreases;however,the internal friction angle shows no apparent change.With the increase in rock content,the peak shear strength of the soil-rock mixture rises first and then decreases and peaks when the rock content is at 45%.When the rock content remains constant,as the number of freeze-thaw cycles rises,the shear strength of the sample reaches its peak after three freeze-thaw cycles.Studies have shown that with an increase in freeze-thaw cycles,the medium and large pores develop rapidly,especially for pores with a size of 0.2–20μm.Freeze-thaw cycling affects the internal pores of the soil-rock mixture by altering its skeleton and,therefore,impacts its macro-mechanical characteristics.展开更多
The detached clay particles directly filtrated through the sand-clay mixture lead to suffusion;however,if the detached clay particles are subjected to reattachment,the degree of suffusion may be less significant.This ...The detached clay particles directly filtrated through the sand-clay mixture lead to suffusion;however,if the detached clay particles are subjected to reattachment,the degree of suffusion may be less significant.This study investigates the impact of clay particle reattachment on suffusion of sand-clay mixtures through laboratory soil-column experiments.The observed breakthrough curves(BTCs)of kaolinite,illite,and montmorillonite for 5 different column lengths(3 in,6 in,9 in,12 in,and 18 in;1 in=2.54 cm)indicated that a higher breakthrough concentration was observed as the column length(L)decreased for kaolinite and illite,whereas a reverse trend was observed for montmorillonite.In addition,the increase in the fraction of filtrated clay particles(Me)with an increase in L(Me=10.42%for L=3 in and Me=3.59%for L=18 in)for the sand-illite mixture indicated that the reattachment effect became more significant as the travel length of detached clay particles increased.The observed BTCs,retention profiles after injection,and fraction of filtrated clay presented herein suggest the need to incorporate the reattachment effect when assessing the suffusion of clay-containing soils.展开更多
The component analysis and structure characterization of complex mixtures of biomass conversion remain a challenging work.Hence,developing effective and easy to use techniques is necessary.Diffusion-ordered NMR spectr...The component analysis and structure characterization of complex mixtures of biomass conversion remain a challenging work.Hence,developing effective and easy to use techniques is necessary.Diffusion-ordered NMR spectroscopy(DOSY)is a non-selective and non-invasive method capable of achieving pseudo-separation and structure assignments of individual compounds from biomass mixtures by providing diffusion coefficients(D)of the components.However,the conventional 1H DOSY NMR is limited by crowded resonances when analyzing complex mixtures containing similar chemical structure resulting in similar coefficient.Herein we describe the application of an advanced diffusion NMR method,Pure Shift Yielded by CHirp Excitation DOSY(PSYCHE-iDOSY),which can record high-resolution signal diffusion spectra efficiently separating compounds in model and genuine mixture samples from cellulose,hemicellulose and lignin.Complicated sets of isomers(D-glucose/D-fructose/D-mannose and 1,2-/1,5-pentadiol),homologous compounds(ethylene glycol and 1,2-propylene glycol),model compounds of lignin,and a genuine reaction system(furfuryl alcohol hydrogenolysis with ring opening)were successfully separated in the diffusion dimension.The results show that the ultrahigh-resolution DOSY technique is capable of detecting and pseudo-separating the mixture components of C_(5)/C_(6) sugar conversion products and its derivative hydrogenation/hydrogenolysis from lignocellulose biomass.展开更多
Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identificatio...Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.展开更多
The vapor recompression heat pump(VRHP) distillation technology offers significant improvements in energy efficiency for distillation systems with small temperature differences between the top and bottom of the column...The vapor recompression heat pump(VRHP) distillation technology offers significant improvements in energy efficiency for distillation systems with small temperature differences between the top and bottom of the column. However, the separation of wide-boiling binary mixtures leads to substantial temperature differences between the top and bottom of the column. This limits the applicability of conventional VRHP due to high capital costs and strict performance requirements of the compressor. To overcome these challenges and to accommodate compressor operating conditions, a novel synthesis and design method is introduced to integrate VRHPs with wide-boiling binary mixture distillation columns(WBMDCs). This method enables quick determination of an initial configuration for the integrated WBMDC-VRHP system and helps identify the optimum configuration with the minimum total annual cost. Two examples, namely the separation of benzene/toluene and isopropanol/chlorobenzene, are employed to derive optimum configurations of the WBMDC-VRHP and compare them with the WBMDC. A systematic comparison between the WBMDC-VRHP and WBMDC demonstrates the superior steady-state performance and economic efficiency of the WBMDC-VRHP.展开更多
This paper presents the results of numerical investigation of the current pulses characteristics in SF_(6)/CF_(4)mixtures for the negative point-plane corona discharge.The pressure and the temperature of gas mixtures ...This paper presents the results of numerical investigation of the current pulses characteristics in SF_(6)/CF_(4)mixtures for the negative point-plane corona discharge.The pressure and the temperature of gas mixtures are 0.4 MPa and 300 K,respectively.The CF_(4)content varies from20%to 80%.The 2D axisymmetric geometry with point-plane electrodes is investigated,and the three drift-diffusion equations are solved to predict the characteristics of the negative corona discharge.In addition,Poisson’s equation is coupled with the above three continuity equations to calculate the electric field.In order to calculate the electron impact coefficients,including the Townsend ionization and attachment coefficients,as well as the mobilities and diffusion coefficients for electrons,the two-term Boltzmann equation is solved.The characteristics of three ionic species at five stages of the first current pulse in 60%SF_(6)-40%CF_(4)and20%SF_(6)-80%CF_(4)mixtures are selected to discuss the development mechanism of current pulses.Moreover,the reduced electric field strengths at the corresponding time instants are presented to help understand the discharge process.The current waveform and the total number of three species are compared in all the cases to analyze the effects of the CF_(4)content on the discharge.The reduced electric field strength is also helpful in understanding the effects of CF_(4)content.When the CF_(4)content increases to 80%,the discharge is more intensive and the pulse frequency also increases.展开更多
As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the...As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the environment from its negative effects.Rutting was used as an indicator to assess the asphalt mixture with EAFD since it is an important factor in pavement design.This study’s major goal is to ascertain how EAFD affects the rutting of asphalt-concrete mixtures.To evaluate the ideal asphalt content,the Marshall test method was applied to asphalt-concrete mixtures.EAFD was added to the asphalt cement in four different volume percentages as a binder addition.Then,using the Universal Testing Machine,participants were exposed to a replica of the rutting test(UTM).Experiments were conducted at 25℃,40℃ and 55℃,and at frequencies of 1 Hz,4 Hz and 8 Hz.Rutting was measured for each specimen.Test results showed that rut depth has a negative correlation with EAFD%and a positive correlation with temperature.The use of EAFD has dual advantages,protecting the environment from the adverse impact of EAFD and reducing the cost of asphalt mix without jeopardizing pavement performance.展开更多
基金Project(50908234)supported by the National Natural Science Foundation of China
文摘As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.
基金Acknowledgements The authors gratefully acknowledge the financial support from the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Foundation of China (Grant Nos. 51674251, 51727807, 51374213), the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Creative Research and Development Group Program of Jiangsu Province (Grant No. 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD2014), and an open project sponsored by the State Key Labo- ratory for Geomechanics and Deep Underground Engineering (Grant SKLGDUE K1318) for their financial support.
文摘Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.
基金funded by the National Natural Science Foundation of China(Grant No.41672258)the Land and Resources Science&Technology Project of Jiangsu Province(Grant No.2018045)。
文摘Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.
基金supported by the National Nature Science Foundation of China(42005136)Innovation Team Fund of Southwest Regional Meteorological Center+3 种基金China Meteorological Administration(XNQYCXTD-202203)China Postdoctoral Science(2020M670419)Key Research and Development program for Social Development in Yunnan Provincial(in China)(202203AC100006,202203AC100005)National Key Research and Development Program of China(2016YFA0602004)。
文摘Significant epidemiological research has revealed that exposure to air pollution is substantially associated with numerous detrimental health consequences^([1-3]).The negative health effects of individual air pollutants(e.g.,fine particulate matter:PM_(2.5);nitrogen dioxide:NO_(2);carbon monoxide,CO;or ozone:O_(3))have been widely explored^([4]).However,humans are constantly exposed to multipollutant mixtures in real life,and biological responses to inhaled pollutants are likely to depend on the interplay of pollutant mixtures.Therefore,it is critical and imperative to explore the joint effects of multipollutant mixtures on human beings.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.
基金supported by National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) (Grant No.22FAA02811)Pearl River Talent Plan for the Introduction of High-level Talents (Young Top-notch Talents) (Grant No.2021QN02G744)+1 种基金National Natural Science Foundation of China (Grant No.52178426)the Fundamental Research Funds for the Central Universities (Grant No.SCUT 2022ZYGXZR066 and 2023ZYGXZR001).
文摘The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
基金funded by the National Natural Science Foundation of China(32271776,32171616)the Special Sichuan Postdoctoral Research Projectsthe National Natural Science Foundation of Sichuan Province,China(2024NSFSC0309,2022NSFSC1769,2022NSFSC0110).
文摘Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management for the establishment of grass-legume mixtures.However,a common concern is that intensive tillage may alter soil characteristics,leading to losses in soil organic carbon(SOC).We investigated the plant community composition,SOC,soil microbial biomass carbon(MBC),soil enzyme activities,and soil properties in long-term perennial grass-legume mixtures under two different tillage intensities(once and twice)as well as in a fenced grassland(FG).The establishment of grass-legume mixtures increased plant species diversity and plant community coverage,compared with FG.Compared with once tilled grassland(OTG),twice tilled grassland(TTG)enhanced the coverage of high-quality leguminous forage species by 380.3%.Grass-legume mixtures with historical tillage decreased SOC and dissolved organic carbon(DOC)concentrations,whereas soil MBC concentrations in OTG and TTG increased by 16.0%and 16.4%,respectively,compared with FG.TTG significantly decreased the activity of N-acetyl-β-D-glucosaminidase(NAG)by 72.3%,whereas soil enzymeβ-glucosidase(βG)in OTG and TTG increased by 55.9%and 27.3%,respectively,compared with FG.Correlation analysis indicated a close association of the increase in MBC andβG activities with the rapid decline in SOC.This result suggested that MBC was a key driving factor in soil carbon storage dynamics,potentially accelerating soil carbon cycling and facilitating biogeochemical cycling.The establishment of grass-legume mixtures effectively improves forage quality and boosts plant diversity,thereby facilitating the restoration of degraded grasslands.Although tillage assists in establishing legume-grass mixtures by controlling weeds,it accelerates microbial activity and organic carbon decomposition.Our findings provide a foundation for understanding the process and effectiveness of restoration management in degraded grasslands.
基金financial support from the National Natural Science Foundation of China (Grant No.52004320)the Science Foundation of China University of Petroleum,Beijing (No.2462021QNXZ012,No.2462022BJRC001,and No.2462021YJRC012)the funding from the State Key Laboratory of Petroleum Resources and Engineering (No.PRP/indep-1-2103)。
文摘It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.
基金supported by the National Natural Science Foundation of China(Grant Nos.41672273,42177137)the Fundamental Research Funds for the Central Universities(22120180313)+1 种基金the support from China Scholarship Council(CSC)(202106260151)substantially supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)。
文摘Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective means to prevent the instability of soilrock mixture slope.In this paper,a centrifuge model test was conducted to investigate the stress distribution of the h-type anti-slide pile and the evolution process of soil arching during the loading.A numerical simulation model was built based on the similar relationship between the centrifuge model and the prototype to investigate the influence factors of the pile spacing,anchored depth,and crossbeam stiffness,and some recommendations were proposed for its application.The results show that the bending moment distribution of the rear pile exhibits Wshaped,while for the front pile,its distribution resembles V-shaped.The soil arching evolution process during loading is gradually dissipated from bottom to top and from far to near.During the loading,the change of bending moment can be divided into three stages,namely,the stabilization stage,the slow growth stage,and the rapid growth stage.In engineering projects,the recommended values of the pile spacing,anchored depth,and crossbeam stiffness are 4.0d,2.0d,and 2.0EI,where d and EI are the diameter and bending stiffness of the h-type anti-slide pile respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.51479095,41372316,and 41572295)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015272)
文摘Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, water content and particle sizes. In this research, a series of large-scale direct shear tests with different water contents and different grain-size distributions were conducted to study the influence of the aforementioned factors on the mechanical properties of the S-RMs. Due to the effect of the rock blocks' breakage in the S-RMs, the relationship between the shear strength and the vertical stress of S-RM follows a power law instead of a linear one. It is found that there exists a threshold value for the vertical stress during the shearing process,below which the soil strength is mainly determined by the inter-locking of particles and the re-arrangement of meso-structure,and otherwise large-sized rock blocks are gradually broken into smaller fragments, resulting in a decrease in the soil strength.The shear rate can also significantly influence the degree of particle breakage and the meso-structural rearrangement of the SRMs, namely, under low shear rate, the particles of the samples are fully broken resulting in enhanced macro-strength. As a result, the lower the shear rate, the higher the macroscopic strength. So under unsaturated conditions, the water content will affect the strength of the S-RMs by reducing the strength of rock blocks. As the water content increases, the soil strength decreases gradually, and assumes a moderate value when the water content reaches 8%. At the same water content, the soil strength increases with the sizes of large rock blocks. For the occlusion, breakage and structure re-arrangement of the oversized rock blocks inside S-RM, which have a huge influence on the mechanical characteristics of the samples.
基金the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China(Grant No.52022112)the Hunan Provincial Innovation Foundation for Postgraduate of China(Grant No.2020zzts152)are acknowledged.
文摘The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.
基金funded by the Science and Technology Research Program of Chongqing Municipal Education Commission(grant number KJZD-K202100705)the Talents Program Supply System of Chongqing(grant number cstc2022ycjhbgzxm0080)。
文摘The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fine-grained soils like clay and silty soils,but the SWCC model for grinding soil-rock mixture(SRM)is less studied.Considering that the SRM is in a certain compaction state in the actual project,this study established a surface model with three variables of coupling compaction degree-substrate suction-moisture content based on the Cavalcante-Zornberg soil-water characteristic curve model.Then,the influence of each fitting parameter on the curve was analyzed.For the common SRM,the soil-water characteristic test was conducted.Moreover,the experimental measurements exhibit remarkable consistency with the mode surface.The analysis shows that the surface model intuitively describes the soil-water characteristics of grinding SRM,which can provide the SWCC of soils with bimodal pore characteristics under specific compaction degrees.Furthermore,it can reflect the influence of compaction degrees on the SWCC of rock-soil mass and has a certain prediction effect.The SWCC of SRM with various soil-rock ratios have a double-step shape.With the increase in compaction degree,the curves as a whole tend toward decreasing mass moisture content.The curve changes are mainly concentrated in the large pore section.
基金supported by the National Natural Science Foundation of China(Nos.42071100,42271144)the Shaanxi Qin Chuangyuan"Scientists+Engineers"Team Construction Project(No.2022KXJ-086).
文摘The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided qualitative analysis of the changes in pore or strength of soil-rock mixture under freeze-thaw cycles.In contrast,few studies focused on the quantitative evaluation of pore change and the relationship between the freeze-thaw strength deterioration and pore change of soil-rock mixture.This study aims to explore the correlation between the micro-pore evolution characteristics and macro-mechanics of a soil-rock mixture after frequent freeze-thaw cycles during the construction and subsequent operation in a permafrost region.The pore characteristics of remolded soil samples with different rock contents(i.e.,25%,35%,45%,and 55%)subjected to various freeze-thaw cycles(i.e.,0,1,3,6,and 10)were quantitatively analyzed using nuclear magnetic resonance(NMR).Shear tests of soil-rock samples under different normal pressures were carried out simultaneously to explore the correlation between the soil strength changes and pore characteristics.The results indicate that with an increase in the number of freeze-thaw cycles,the cohesion of the soil-rock mixture generally decreases first,then increases,and finally decreases;however,the internal friction angle shows no apparent change.With the increase in rock content,the peak shear strength of the soil-rock mixture rises first and then decreases and peaks when the rock content is at 45%.When the rock content remains constant,as the number of freeze-thaw cycles rises,the shear strength of the sample reaches its peak after three freeze-thaw cycles.Studies have shown that with an increase in freeze-thaw cycles,the medium and large pores develop rapidly,especially for pores with a size of 0.2–20μm.Freeze-thaw cycling affects the internal pores of the soil-rock mixture by altering its skeleton and,therefore,impacts its macro-mechanical characteristics.
基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSIT)(Grant.Nos.2019R1A2C2086647 and 2022R1C1C1007296).
文摘The detached clay particles directly filtrated through the sand-clay mixture lead to suffusion;however,if the detached clay particles are subjected to reattachment,the degree of suffusion may be less significant.This study investigates the impact of clay particle reattachment on suffusion of sand-clay mixtures through laboratory soil-column experiments.The observed breakthrough curves(BTCs)of kaolinite,illite,and montmorillonite for 5 different column lengths(3 in,6 in,9 in,12 in,and 18 in;1 in=2.54 cm)indicated that a higher breakthrough concentration was observed as the column length(L)decreased for kaolinite and illite,whereas a reverse trend was observed for montmorillonite.In addition,the increase in the fraction of filtrated clay particles(Me)with an increase in L(Me=10.42%for L=3 in and Me=3.59%for L=18 in)for the sand-illite mixture indicated that the reattachment effect became more significant as the travel length of detached clay particles increased.The observed BTCs,retention profiles after injection,and fraction of filtrated clay presented herein suggest the need to incorporate the reattachment effect when assessing the suffusion of clay-containing soils.
基金The authors thank for National Natural Science Foundation of China(22075308)for financial support。
文摘The component analysis and structure characterization of complex mixtures of biomass conversion remain a challenging work.Hence,developing effective and easy to use techniques is necessary.Diffusion-ordered NMR spectroscopy(DOSY)is a non-selective and non-invasive method capable of achieving pseudo-separation and structure assignments of individual compounds from biomass mixtures by providing diffusion coefficients(D)of the components.However,the conventional 1H DOSY NMR is limited by crowded resonances when analyzing complex mixtures containing similar chemical structure resulting in similar coefficient.Herein we describe the application of an advanced diffusion NMR method,Pure Shift Yielded by CHirp Excitation DOSY(PSYCHE-iDOSY),which can record high-resolution signal diffusion spectra efficiently separating compounds in model and genuine mixture samples from cellulose,hemicellulose and lignin.Complicated sets of isomers(D-glucose/D-fructose/D-mannose and 1,2-/1,5-pentadiol),homologous compounds(ethylene glycol and 1,2-propylene glycol),model compounds of lignin,and a genuine reaction system(furfuryl alcohol hydrogenolysis with ring opening)were successfully separated in the diffusion dimension.The results show that the ultrahigh-resolution DOSY technique is capable of detecting and pseudo-separating the mixture components of C_(5)/C_(6) sugar conversion products and its derivative hydrogenation/hydrogenolysis from lignocellulose biomass.
基金supported by the grants from the Natural Science Foundation of Hubei Province(No.2020CFB780)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ020).
文摘Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
文摘The vapor recompression heat pump(VRHP) distillation technology offers significant improvements in energy efficiency for distillation systems with small temperature differences between the top and bottom of the column. However, the separation of wide-boiling binary mixtures leads to substantial temperature differences between the top and bottom of the column. This limits the applicability of conventional VRHP due to high capital costs and strict performance requirements of the compressor. To overcome these challenges and to accommodate compressor operating conditions, a novel synthesis and design method is introduced to integrate VRHPs with wide-boiling binary mixture distillation columns(WBMDCs). This method enables quick determination of an initial configuration for the integrated WBMDC-VRHP system and helps identify the optimum configuration with the minimum total annual cost. Two examples, namely the separation of benzene/toluene and isopropanol/chlorobenzene, are employed to derive optimum configurations of the WBMDC-VRHP and compare them with the WBMDC. A systematic comparison between the WBMDC-VRHP and WBMDC demonstrates the superior steady-state performance and economic efficiency of the WBMDC-VRHP.
基金Natural Science Foundation of Shaanxi Provincial Department of Education(No.21JK0792)National Natural Science Foundation of China(No.51521065)+1 种基金National Key Basic Research Program of China(973 Program)(No.2015CB251001)the Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘This paper presents the results of numerical investigation of the current pulses characteristics in SF_(6)/CF_(4)mixtures for the negative point-plane corona discharge.The pressure and the temperature of gas mixtures are 0.4 MPa and 300 K,respectively.The CF_(4)content varies from20%to 80%.The 2D axisymmetric geometry with point-plane electrodes is investigated,and the three drift-diffusion equations are solved to predict the characteristics of the negative corona discharge.In addition,Poisson’s equation is coupled with the above three continuity equations to calculate the electric field.In order to calculate the electron impact coefficients,including the Townsend ionization and attachment coefficients,as well as the mobilities and diffusion coefficients for electrons,the two-term Boltzmann equation is solved.The characteristics of three ionic species at five stages of the first current pulse in 60%SF_(6)-40%CF_(4)and20%SF_(6)-80%CF_(4)mixtures are selected to discuss the development mechanism of current pulses.Moreover,the reduced electric field strengths at the corresponding time instants are presented to help understand the discharge process.The current waveform and the total number of three species are compared in all the cases to analyze the effects of the CF_(4)content on the discharge.The reduced electric field strength is also helpful in understanding the effects of CF_(4)content.When the CF_(4)content increases to 80%,the discharge is more intensive and the pulse frequency also increases.
文摘As a byproduct of the steelmaking process,significant amounts of hazardous electric arc furnace dust(EAFD)are produced.Utilizing the solidification/stabilization technology with asphalt mix is one way to safeguard the environment from its negative effects.Rutting was used as an indicator to assess the asphalt mixture with EAFD since it is an important factor in pavement design.This study’s major goal is to ascertain how EAFD affects the rutting of asphalt-concrete mixtures.To evaluate the ideal asphalt content,the Marshall test method was applied to asphalt-concrete mixtures.EAFD was added to the asphalt cement in four different volume percentages as a binder addition.Then,using the Universal Testing Machine,participants were exposed to a replica of the rutting test(UTM).Experiments were conducted at 25℃,40℃ and 55℃,and at frequencies of 1 Hz,4 Hz and 8 Hz.Rutting was measured for each specimen.Test results showed that rut depth has a negative correlation with EAFD%and a positive correlation with temperature.The use of EAFD has dual advantages,protecting the environment from the adverse impact of EAFD and reducing the cost of asphalt mix without jeopardizing pavement performance.