The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ...The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model.展开更多
Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a per...Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a perfect wettability material,and the contact angle(CA)of the soil-water interface was taken as zero in the SWCC prediction method.However,the CA has proved to be much greater than zero even for hydrophilic soils according to some soil wettability experiments,and it has a significant effect on predicting the SWCC.In this research,a method for predicting the SWCC by MIP,which takes the CA as a fitting coefficient,is proposed.The pore size distribution curves are measured by MIP,and the SWCCs of two loess soils are measured by pressure plate and filter paper tests.When the CA is taken as70°and 50°for the wetting and drying process,respectively,the SWCCs predicted by the pore size distribution curves agree well with the measured SWCCs.The predicted suction range of the proposed method is 0-105 k Pa.The consistency of the results suggests that utilizing the MIP test to predict the SWCC with a proper CA is effective for loess.展开更多
The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental f...The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range.展开更多
Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ...Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ and/or laboratory tests. Such direct measurements are, however, costly and timeconsuming due to high standards for equipment and procedural control and limits in testing apparatus. As a result, only a limited number of data points(e.g., volumetric water content vs. matric suction)on SWCC at some values of matric suction are obtained in practice. How to use a limited number of data points to estimate the site-specific SWCC and to quantify the uncertainty(or degrees-of-belief) in the estimated SWCC remains a challenging task. This paper proposes a Bayesian approach to determine a site-specific SWCC based on a limited number of test data and prior knowledge(e.g., engineering experience and judgment). The proposed Bayesian approach quantifies the degrees-of-belief on the estimated SWCC according to site-specific test data and prior knowledge, and simultaneously selects a suitable SWCC model from a number of candidates based on the probability logic. To address computational issues involved in Bayesian analyses, Markov Chain Monte Carlo Simulation(MCMCS), specifically Metropolis-Hastings(M-H) algorithm, is used to solve the posterior distribution of SWCC model parameters, and Gaussian copula is applied to evaluating model evidence based on MCMCS samples for selecting the most probable SWCC model from a pool of candidates. This removes one key limitation of the M-H algorithm, making it feasible in Bayesian model selection problems. The proposed approach is illustrated using real data in Unsaturated Soil Database(UNSODA) developed by U.S. Department of Agriculture. It is shown that the proposed approach properly estimates the SWCC based on a limited number of site-specific test data and prior knowledge, and reflects the degrees-of-belief on the estimated SWCC in a rational and quantitative manner.展开更多
It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fi...It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate.展开更多
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami...The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.展开更多
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g...The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively...Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.展开更多
It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results ...It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results can be used to deduce the SWRC(termed SWRCMIP).However,SWRCMIP does not include the effect of volume change,compared with the conventional SWRC that is directly determined by suction measurement or suction control techniques.For deformable soils,there is a significant difference between conventional SWRC and SWRCMIP.In this study,drying test was carried out on a reconstituted silty soil,and the volume change,suction,and PSD were measured on samples with different water contents.The change in the deduced SWRCMIP and its relationship with the conventional SWRC were analyzed.The results showed that the volume change of soil is the main reason accounting for the difference between conventional SWRC and SWRCMIP.Based on the test results,a transformation model was then proposed for conventional SWRC and SWRCMIP,for which the soil state with no volume change is taken as a reference.Comparison between the experimental and predicted SWRCs showed that the proposed model can well consider the influence of soil volume change on its water retention property.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the sy...The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.展开更多
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t...Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.展开更多
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ...Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.展开更多
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained ...The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.展开更多
The /-V-(T) characteristic curves of p-n junctions with the forward voltage as the independent variable, the logarithm of forward current as the dependent variable, and the junction temperature as the parameter, alm...The /-V-(T) characteristic curves of p-n junctions with the forward voltage as the independent variable, the logarithm of forward current as the dependent variable, and the junction temperature as the parameter, almost converge at one point in the first quadrant. The voltage corresponding with the convergence point nearly equals the bandgap of the semiconductor material. This convergence point can be used to obtain the I-V characteristic curve at any temperature.展开更多
[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c...[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.展开更多
In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura...In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.展开更多
The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understand...The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understanding the transportation of heat,water,and solute in frozen soils.In this paper,the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve(SWCC)of unfrozen unsaturated soil are reviewed.Based on similar characteristics between SWCC and SFCC,a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes.Various SFCC expressions from the literature are summarized.Four widely used expressions(i.e.,power relationship,exponential relationship,van Genuchten 1980 equation and Fredlund and Xing 1994 equation)are evaluated using published experimental data on four different soils(i.e.,sandy loam,silt,clay,and saline silt).Results show that the exponential relationship and van Genuchten(1980)equation are more suitable for sandy soils.The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes;however,it exhibits limitations when fitting the saline silt data.The Fredlund and Xing(1994)equation is suitable for fitting the SFCCs for all soils studied in this paper.展开更多
Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR wer...Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.展开更多
基金Project (No. 22833012) supported by the China Scholarship Council
文摘The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model.
基金supported by the National Natural Science Foundation of China(Program No.41790442 and No.41772278)。
文摘Mercury intrusion porosimetry(MIP)is a simple and fast way to obtain the pore distribution of soil and can be used to estimate the soil-water characteristic curve(SWCC).In previous studies,soil was assumed to be a perfect wettability material,and the contact angle(CA)of the soil-water interface was taken as zero in the SWCC prediction method.However,the CA has proved to be much greater than zero even for hydrophilic soils according to some soil wettability experiments,and it has a significant effect on predicting the SWCC.In this research,a method for predicting the SWCC by MIP,which takes the CA as a fitting coefficient,is proposed.The pore size distribution curves are measured by MIP,and the SWCCs of two loess soils are measured by pressure plate and filter paper tests.When the CA is taken as70°and 50°for the wetting and drying process,respectively,the SWCCs predicted by the pore size distribution curves agree well with the measured SWCCs.The predicted suction range of the proposed method is 0-105 k Pa.The consistency of the results suggests that utilizing the MIP test to predict the SWCC with a proper CA is effective for loess.
基金the National Natural Science Fund of China (Grant Nos. 51779191, 51809199)
文摘The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range.
基金supported by the National Key Research and Development Program of China(Project No.2016YFC0800208)the National Natural Science Foundation of China(Project Nos.51329901,51528901,51579190,51779189)
文摘Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ and/or laboratory tests. Such direct measurements are, however, costly and timeconsuming due to high standards for equipment and procedural control and limits in testing apparatus. As a result, only a limited number of data points(e.g., volumetric water content vs. matric suction)on SWCC at some values of matric suction are obtained in practice. How to use a limited number of data points to estimate the site-specific SWCC and to quantify the uncertainty(or degrees-of-belief) in the estimated SWCC remains a challenging task. This paper proposes a Bayesian approach to determine a site-specific SWCC based on a limited number of test data and prior knowledge(e.g., engineering experience and judgment). The proposed Bayesian approach quantifies the degrees-of-belief on the estimated SWCC according to site-specific test data and prior knowledge, and simultaneously selects a suitable SWCC model from a number of candidates based on the probability logic. To address computational issues involved in Bayesian analyses, Markov Chain Monte Carlo Simulation(MCMCS), specifically Metropolis-Hastings(M-H) algorithm, is used to solve the posterior distribution of SWCC model parameters, and Gaussian copula is applied to evaluating model evidence based on MCMCS samples for selecting the most probable SWCC model from a pool of candidates. This removes one key limitation of the M-H algorithm, making it feasible in Bayesian model selection problems. The proposed approach is illustrated using real data in Unsaturated Soil Database(UNSODA) developed by U.S. Department of Agriculture. It is shown that the proposed approach properly estimates the SWCC based on a limited number of site-specific test data and prior knowledge, and reflects the degrees-of-belief on the estimated SWCC in a rational and quantitative manner.
基金supported by the National Natural Science Foundation of China (Grant No. 10872210)the State Key Laboratory of Geomechanics and Geotechnical Engineering (Grant No. Y11002)
文摘It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate.
基金supported by the National Natural Science Foundation of China(Grant No.51979002)the Fundamental Research Funds for the Central Universities(Grant No.2022YJS080).
文摘The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.
基金Project(51068002) supported by the National Natural Science Foundation of ChinaProject(10-046-14-1) supported by Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,China
文摘The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
基金Projects(40772180, 40572161, 40802064) supported by the National Natural Science Foundation of ChinaProject ([2007]831) supported by Commission of Science, Technology and Industry for National Defense of China+3 种基金Project(07JJ4012) supported by Hunan Provincial Natural Science Foundation of ChinaProject(20080430680) supported by China Postdoctoral Science FoundationProject(08R214155) supported by Shanghai Postdoctoral Scientific Program of ChinaProject(B308) supported by Shanghai Leading Academic Discipline Project of China
文摘Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.
基金Shanghai Key Innovative Team of Cultural Heritage Conservation and the financial support from the National Sciences Foundation of China(Grant Nos.41977214 and 41572284)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z013008)。
文摘It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results can be used to deduce the SWRC(termed SWRCMIP).However,SWRCMIP does not include the effect of volume change,compared with the conventional SWRC that is directly determined by suction measurement or suction control techniques.For deformable soils,there is a significant difference between conventional SWRC and SWRCMIP.In this study,drying test was carried out on a reconstituted silty soil,and the volume change,suction,and PSD were measured on samples with different water contents.The change in the deduced SWRCMIP and its relationship with the conventional SWRC were analyzed.The results showed that the volume change of soil is the main reason accounting for the difference between conventional SWRC and SWRCMIP.Based on the test results,a transformation model was then proposed for conventional SWRC and SWRCMIP,for which the soil state with no volume change is taken as a reference.Comparison between the experimental and predicted SWRCs showed that the proposed model can well consider the influence of soil volume change on its water retention property.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
基金This work was financially supported by National Natural Science Foundation of China through Grant 51778471Scientific Project of Education Department of Jiangxi Province GJJ160620Science and Technology Project of Communications Department of Jiangxi Province 2016C0006.
文摘The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.
基金funded by the Fundamental Research Funds for the Central UniversitiesCHD(Grant No.300102262503)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grants No.2022JM-167)the National Natural Science Foundation of China(Grant Nos.41790442,41772278,41877242,42072311)the Yan’an Science and Technology Plan Project(Grant No.2022SLSFGG-004)。
文摘Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.
文摘Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.
基金Supported by the National Natural Science Foundation of China(No.51409261)
文摘The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.
文摘The /-V-(T) characteristic curves of p-n junctions with the forward voltage as the independent variable, the logarithm of forward current as the dependent variable, and the junction temperature as the parameter, almost converge at one point in the first quadrant. The voltage corresponding with the convergence point nearly equals the bandgap of the semiconductor material. This convergence point can be used to obtain the I-V characteristic curve at any temperature.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3031)~~
文摘[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.
文摘In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.
文摘The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understanding the transportation of heat,water,and solute in frozen soils.In this paper,the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve(SWCC)of unfrozen unsaturated soil are reviewed.Based on similar characteristics between SWCC and SFCC,a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes.Various SFCC expressions from the literature are summarized.Four widely used expressions(i.e.,power relationship,exponential relationship,van Genuchten 1980 equation and Fredlund and Xing 1994 equation)are evaluated using published experimental data on four different soils(i.e.,sandy loam,silt,clay,and saline silt).Results show that the exponential relationship and van Genuchten(1980)equation are more suitable for sandy soils.The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes;however,it exhibits limitations when fitting the saline silt data.The Fredlund and Xing(1994)equation is suitable for fitting the SFCCs for all soils studied in this paper.
文摘Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.