Li 2+ x RE x Si 1- x O 3(RE=Pr, Nd, Sm, Gd; x =0~0 15) samples were prepared by the sol gel method. DTA TG, XRD, TEM and A C impedance techniques were used to investigate the structure, sha...Li 2+ x RE x Si 1- x O 3(RE=Pr, Nd, Sm, Gd; x =0~0 15) samples were prepared by the sol gel method. DTA TG, XRD, TEM and A C impedance techniques were used to investigate the structure, shape, and ionic conductivity of these samples. The results show that the range of solid solution formation is in 0< x ≤0 09, in which the conductivity of these samples raises with the increasing amount of RE 2O 3 (RE=Pr, Nd, Sm, Gd) added, and the diameter of the powders is about 100 nm. Compared with the conventional solid state reaction, the sol gel method needs low temperature and presents high ionic conductivity.展开更多
Nanocrystalline rare earth mixed oxides DyFe x Co 1- x O 3- δ were prepared by sol gel method and characterized by X ray diffraction (XRD), thermogravimetric analysis (TG DTA) and scanning elec...Nanocrystalline rare earth mixed oxides DyFe x Co 1- x O 3- δ were prepared by sol gel method and characterized by X ray diffraction (XRD), thermogravimetric analysis (TG DTA) and scanning electron microscope (SEM). The results show that DyFe x Co 1- x O 3- δ has the structure of perovskite type at 800 ℃ for 2 h calcination. The conductivity of the materials at different temperature was measured by four probe instrumentation and two pole method. The results show that the conductivity of mixed oxides DyFe x Co 1- x O 3- δ is higher than those of un mixed oxides DyFeO 3 and DyCoO 3 and the conductivity is the best at x =0.8 in the matter of DyFe x Co 1- x O 3- δ . The conductivity of these materials always increases with the temperature rising and there is an apparent change between 600 and 800 ℃. However, the spinodals are different with different ration of Fe 3+ and Co 3+ . This kind of oxide is a conductive pottery material.展开更多
ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, ...ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.展开更多
文摘Li 2+ x RE x Si 1- x O 3(RE=Pr, Nd, Sm, Gd; x =0~0 15) samples were prepared by the sol gel method. DTA TG, XRD, TEM and A C impedance techniques were used to investigate the structure, shape, and ionic conductivity of these samples. The results show that the range of solid solution formation is in 0< x ≤0 09, in which the conductivity of these samples raises with the increasing amount of RE 2O 3 (RE=Pr, Nd, Sm, Gd) added, and the diameter of the powders is about 100 nm. Compared with the conventional solid state reaction, the sol gel method needs low temperature and presents high ionic conductivity.
文摘Nanocrystalline rare earth mixed oxides DyFe x Co 1- x O 3- δ were prepared by sol gel method and characterized by X ray diffraction (XRD), thermogravimetric analysis (TG DTA) and scanning electron microscope (SEM). The results show that DyFe x Co 1- x O 3- δ has the structure of perovskite type at 800 ℃ for 2 h calcination. The conductivity of the materials at different temperature was measured by four probe instrumentation and two pole method. The results show that the conductivity of mixed oxides DyFe x Co 1- x O 3- δ is higher than those of un mixed oxides DyFeO 3 and DyCoO 3 and the conductivity is the best at x =0.8 in the matter of DyFe x Co 1- x O 3- δ . The conductivity of these materials always increases with the temperature rising and there is an apparent change between 600 and 800 ℃. However, the spinodals are different with different ration of Fe 3+ and Co 3+ . This kind of oxide is a conductive pottery material.
基金financially supported by National Natural Science Foundation of China(Grant No.51372193)Natural Science Basic Research Fund of Shaanxi Province(Grant No.2014JM6224)
文摘ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.