In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, ...In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.展开更多
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per...The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.展开更多
Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. ...Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.展开更多
The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by ...The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)展开更多
It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhib...It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.展开更多
The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. ...The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcinat...CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.展开更多
To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid...To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid,polyethylene glycol and cetyltrimethylammonium bromide) based on the most suitable method above.The cracking reaction of methylcyclohexane under supercritical conditions was performed as the probe reaction to estimate the catalytic performance,and the properties of Ni-Mo/SiO_(2) catalyst were characterized by N_(2) absorption-desorption,XRD,XPS,H_(2)-TPR,NH_(3)-TPD,in-situ IR of NH_(3) desorption,HRTEM and STEM-mapping so as to study the structure-activity relationship.The catalyst synthesized via sol-gel method showed the best conversion and heat sink,being 81.8% and 3.81 MJ/kg,which was closely related to strong mutual effect between active components and SiO_(2) as well as strong acid sites.Besides,the introduction of additives by sol-gel method has an affirmative influence on properties of Ni-Mo/SiO_(2) catalysts,being that the acidity(more L and B acid sites) was modulated and organic groups interact with metal to suppress the aggregation of metal species(Ni and Mo),thereby enhancing the catalytic activity.At 750℃,the conversion(89.3%) as well as heat sink(3.99 MJ/kg) of MCH cracking obtained an optimum over Ni-Mo/SiO_(2) catalyst with addition of citric acid.展开更多
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron...A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.展开更多
LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>x</sub>Cr<sub>y</sub>Mn<sub>2-x-y</sub>O<sub>4</sub> (x = 0.50;y = 0.05 - 0.50) powders have been synt...LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>x</sub>Cr<sub>y</sub>Mn<sub>2-x-y</sub>O<sub>4</sub> (x = 0.50;y = 0.05 - 0.50) powders have been synthesized via sol-gel method for the first time using Myristic acid as chelating agent. The synthesized samples have been taken to physical and electrochemical characterization such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical characterization viz., electrochemical galvanostatic cycling studies, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). XRD patterns of LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>x</sub>Cr<sub>y</sub>Mn<sub>2-x-y</sub>O<sub>4</sub> confirm high degree of crystallinity with good phase purity. FESEM image of undoped pristine spinel lucidly depicts cauliflower morphology with good agglomerated particle size of 50 nm while 0.5-Cu doped samples depict the pebbles morphology. TEM images of the spinel LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>0.5</sub>Cr<sub>0.05</sub>Mn<sub>1.45</sub>O<sub>4</sub> authenticate that all the synthesized particles via sol-gel method are nano-sized (100 nm) with spherical surface and cloudy particles morphology. The LiMn<sub>2</sub>O<sub>4</sub> samples calcined at 850℃ deliver the high discharge capacity of 130 mA·h/g with cathodic efficiency of 88% corresponds to 94% columbic efficiency in the first cycle. Among all four compositions studied, LiCu<sub>0.5</sub>Cr<sub>0.05</sub>Mn<sub>1.45</sub>O<sub>4</sub> delivers 124 mA·h/g during the first cycle and shows stable performance with a low capacity fade of 1.1 mA·h/g cycle over the investigated 10 cycles.展开更多
文摘In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.
基金supported by the Jiangxi Provincial Department of Education
文摘The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.
基金Projects (50776037,50721005) supported by the National Natural Science Foundation of China
文摘Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.
基金Projects(CC20120031,CC20110048)supported by Changzhou Science and Technology Innovation Project,China
文摘The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)
文摘It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.
文摘The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).
文摘CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.
基金supported by National Natural Science Foundation of China [grant number 91841301]Fundamental Research Funds for the Central Universities [grant number YJ201791]。
文摘To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid,polyethylene glycol and cetyltrimethylammonium bromide) based on the most suitable method above.The cracking reaction of methylcyclohexane under supercritical conditions was performed as the probe reaction to estimate the catalytic performance,and the properties of Ni-Mo/SiO_(2) catalyst were characterized by N_(2) absorption-desorption,XRD,XPS,H_(2)-TPR,NH_(3)-TPD,in-situ IR of NH_(3) desorption,HRTEM and STEM-mapping so as to study the structure-activity relationship.The catalyst synthesized via sol-gel method showed the best conversion and heat sink,being 81.8% and 3.81 MJ/kg,which was closely related to strong mutual effect between active components and SiO_(2) as well as strong acid sites.Besides,the introduction of additives by sol-gel method has an affirmative influence on properties of Ni-Mo/SiO_(2) catalysts,being that the acidity(more L and B acid sites) was modulated and organic groups interact with metal to suppress the aggregation of metal species(Ni and Mo),thereby enhancing the catalytic activity.At 750℃,the conversion(89.3%) as well as heat sink(3.99 MJ/kg) of MCH cracking obtained an optimum over Ni-Mo/SiO_(2) catalyst with addition of citric acid.
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
文摘A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.
文摘LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>x</sub>Cr<sub>y</sub>Mn<sub>2-x-y</sub>O<sub>4</sub> (x = 0.50;y = 0.05 - 0.50) powders have been synthesized via sol-gel method for the first time using Myristic acid as chelating agent. The synthesized samples have been taken to physical and electrochemical characterization such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical characterization viz., electrochemical galvanostatic cycling studies, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). XRD patterns of LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>x</sub>Cr<sub>y</sub>Mn<sub>2-x-y</sub>O<sub>4</sub> confirm high degree of crystallinity with good phase purity. FESEM image of undoped pristine spinel lucidly depicts cauliflower morphology with good agglomerated particle size of 50 nm while 0.5-Cu doped samples depict the pebbles morphology. TEM images of the spinel LiMn<sub>2</sub>O<sub>4</sub> and LiCu<sub>0.5</sub>Cr<sub>0.05</sub>Mn<sub>1.45</sub>O<sub>4</sub> authenticate that all the synthesized particles via sol-gel method are nano-sized (100 nm) with spherical surface and cloudy particles morphology. The LiMn<sub>2</sub>O<sub>4</sub> samples calcined at 850℃ deliver the high discharge capacity of 130 mA·h/g with cathodic efficiency of 88% corresponds to 94% columbic efficiency in the first cycle. Among all four compositions studied, LiCu<sub>0.5</sub>Cr<sub>0.05</sub>Mn<sub>1.45</sub>O<sub>4</sub> delivers 124 mA·h/g during the first cycle and shows stable performance with a low capacity fade of 1.1 mA·h/g cycle over the investigated 10 cycles.