Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’...Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’-sialon/SiC sample with 60 wt% silicon carbide sintered at 1 600 ℃ exhibited excellent mechanical properties,with apparent porosity of 16.01%,bulk density of 2.06 g·cm^(-3),bending strength of 52.63 MPa,and thermal expansion coefficient of 5.83×10-6 ℃^(-1).The oxide film formed on the surface was linked closely to O’-sialon,so the oxide film was not easily broken.After 100 h oxidization,the sample surface was smoother and denser,with oxidation weight gain rate 23.6 mg/cm^(2) and oxidation rate constant 2.0 mg^(2)·cm^(-4)·h^(-1).Therefore,the sample had the excellent high-temperature oxidation resistance.It was confirmed that the in-situ sialon/SiC composites could be a promising candidate for solar absorber owing to its high-temperature oxidation resistance.展开更多
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th...A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.展开更多
Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in applica...Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.展开更多
As a solution for solar heating, the low-cost and long-life vanadium-titanium black ceramic solar absorbers have been used in rural construction. However, in contrast to its high absorptance(0.93-0.97), ceramic also h...As a solution for solar heating, the low-cost and long-life vanadium-titanium black ceramic solar absorbers have been used in rural construction. However, in contrast to its high absorptance(0.93-0.97), ceramic also has high emissivity(approximately 90%) and low thermal conductivity(1.3 W/(m·K)). Without a glaze covering, ceramic absorbers cannot meet the industrial standard. This paper assumes that glaze covering can be substituted by insulation film in a solar greenhouse. To verify this assumption, field experiments were conducted. First, a traditional greenhouse in the Tacheng Basin, a severely cold area in China, was renovated to improve its passive thermal performance. Then, 90 m^(2) of ceramic absorbers and floor coils as well as a water tank were installed inside the greenhouse, which made the entire construction act as an integrated solar collector. This heat collection and release system moderately increased the indoor air temperature(0.9℃-22.4℃) and substantially increased the soil temperature(15.5℃-31.2℃). The average daily useful heat gain under a daily solar insolation value of 17 MJ/m^(2) was 13.8 MJ, and the mean value of the collection efficiency was 0.81. Furthermore, the payback time of the project(7 years) is short, which is principally due to the low cost of ceramic materials and the financial savings of the shared construction components(e.g., transparent cover, metal frame and extra insulation). In conclusion, the main contribution of this study is the verification that it is feasible to replace glaze covering with insulation film in a novel greenhouse-integrated vanadium-titanium black ceramic solar system.展开更多
Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the eff...Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the effects of fine nanoparticle structural features on the light-matter interactions in nanocermet layers and corresponding cermet-based solar absorbers are still not well clear until now.Herein,we report a systematical investigation on the effects of W(tungsten)nanoparticle sizes,its concentrations and configurations in an alumina matrix on the optical responses of WeAl_(2)O_(3) nanocermet layers and a solar absorber with double-cermet layers.It is found that to possess admirable light absorption features at high temperatures,it is better to maintain the fine particle size of less than 10 nm,isolated states and suitable separations between them for WeAl_(2)O_(3) nanocermets.Thus,the dominated intrinsic absorption of W NPs,their plasmonic excitation and coupling effects among each other all contribute significantly to the broadband optical performance of the cermet layers and the whole absorber.More importantly,this study demonstrates a valuable criterion for maintaining optical performances of nanocermet layers and cermet-based solar absorbers under heating and thus their thermal robustness.展开更多
A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gall...A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gallium arsenide (GaAs) plane in the top layer. The simulated results show that a perfect absorption in the region from 481.2 to 684.0THz can be obtained for either transverse electric or magnetic polarization wave due to the coupling effect between the material of GaAs and gold. The metamaterial is ultra-thin, having the total thickness of 56nm, which is less than one-tenth resonance wavelength, and the absorption coefficients at the three resonance wavelengths are above 90%. Moreover, the effective medium theory, electric field and surface current distributions are adopted to explain the physical mechanism of the absorption, and the permittivity sensing applications are also discussed. As a result, the proposed structure can be used in many areas, such as solar cell, sensors, and integrated photodetectors.展开更多
With the development of new materials and technology,high entropy alloy(HEA)nitride films have attracted much attention of researchers due to their excellent optical properties and mechanical properties.Herein,a novel...With the development of new materials and technology,high entropy alloy(HEA)nitride films have attracted much attention of researchers due to their excellent optical properties and mechanical properties.Herein,a novel SS/NbMoTaWN(HEAN)/NbMoTaWON(HEAON)/SiO_(2) coatings are prepared,which shows a high spectral selectivity of a/ε=0.944/0.12.The preparation and optimization of the coating are studied by combining experiments with ellipsometric program and CODE software.High temperature thermal stability test is performed in depth,which proves that the coating could bear 400℃ in air for 2 h,and 600℃for 2 h in vacuum.Long-term thermal stability researches indicate that the SSACs still keep good optical properties(a=0.902,ε=0.106)even after annealing at 600℃ for 100 h.The failure mechanism is analyzed by XRD and Raman spectra.In addition,neutral salt spray test is performed to investigate the anti-corrosion ability,which indicates the coating has a good optical performance after soaking in 3.5 wt%NaCl solution for 30 days.Obviously,this work provides a new strategy to construct solar absorber coatings based on NbMoTaW high entropy alloy.展开更多
The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates ...The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.展开更多
TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical pr...TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical properties (absorptance and emittance) of the coatings were measured by a spectrophotometer. It was found that, after being annealed for 2 hours at different temperatures, the absorptance of the coatings reached the highest value of 0.92 at 700 ℃ while the emittance got the lowest value of 0.38 at 800 ℃. When the coatings were annealed at 600 ℃ for 24 hours, the optical properties changed to 0.92/0.44 (absorptance/ emittance). By measuring the structure, morphology, elements and surface roughness of the coatings, it was found that both the elemental composition and the surface roughness of the coatings changed as a result of annealing, and these changes caused the change of the optical properties of the coatings.展开更多
Two types of resonance absorbers, i.e., Salis- bury screens and Jaumann absorbers are systematically investigated in solar radiation absorption. Salisbury screen is a metal-dielectric-metal structure which overcomes t...Two types of resonance absorbers, i.e., Salis- bury screens and Jaumann absorbers are systematically investigated in solar radiation absorption. Salisbury screen is a metal-dielectric-metal structure which overcomes the drawback of bulky thickness for solar spectrum. Such structures have a good spectral selective absorption property, which is also insensitive to incident angles and polarizations. To further broaden absorption bandwidth, more metal and dielectric films are taken in the structure to form Jaumann absorbers. To design optimized structural parameters, the admittance matching equations have been derived in this paper to give good initial structures, which are valuable for the following optimization. Moreover, the analysis of admittance loci has been conducted to directly show the effect of each layer on the spectral absorptivity, and then the effect of thin films is well understood. Since the fabrication of these layered absorbers is much easier than that of other nanostructured absorbers, Salisbury screen and Jaumann absorbers have a great potential in large-area applications.展开更多
High entropy alloys(HEAs),which is at the expense of high cost compared to traditional alloy,should not be confined to the mechanical properties,but should be employed to devise a novel combination with unique functio...High entropy alloys(HEAs),which is at the expense of high cost compared to traditional alloy,should not be confined to the mechanical properties,but should be employed to devise a novel combination with unique functional and mechanical performances.In this work,high entropy alloy nitride(HEAN)is utilized as a novel double absorption layer to improve solar absorption in the high temperature solar selective absorbing coatings(SSACs).Our primary motivation is to lower thermal emittance(ε)and enhance solar absorptance(a).In order to realize this goal,coating design(CODE)software is employed to design and optimize the proposed HEAN based SSACs using appropriate dielectric function model.The ultimate as-deposited coating shows good optical properties with a high a value of 0.965 and a lowεvalue of 0.086(at 82C).The estimate of thermal stability tests indicates that HEAN based SSACs has the ability to resist instability in high working temperature,which keeps good optical properties(a¼0.925,ε¼0.070)after annealing at 600C for 10 h.展开更多
We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities hav...We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.展开更多
Solar selective absorbing coatings directly harvest solar energy in the form of heat.The higher temperatures are required to drive higher power-cycle efficiencies in favor of lower costs of energy.According to differe...Solar selective absorbing coatings directly harvest solar energy in the form of heat.The higher temperatures are required to drive higher power-cycle efficiencies in favor of lower costs of energy.According to different dielectrics,high temperature coatings can mainly be divided to double cermet solar selective coatings,transition metal nitride multilayer coatings and transition metal oxide multilayer coatings.This paper assesses the photothermal conversion efficiency and thermal stability,and discusses the challenges and strategies of improving both thermal and optical properties.Double cermet layers can stabilize nanocrystalline structures by alloying,while transition metal nitride/oxide layers generally choose the reliable materials with superior mechanical properties and thermal stability.The purpose of this review is to get the optimized systems,and propose further research directions at higher temperature,such as all-ceramic absorbing coatings.展开更多
Solar selective absorbing coatings(SSACs)are required to have not only excellent optical property but also outstanding thermal stability for high temperature applications.The optical properties of Mo/ZrSiN/ZrSiON/SiO_...Solar selective absorbing coatings(SSACs)are required to have not only excellent optical property but also outstanding thermal stability for high temperature applications.The optical properties of Mo/ZrSiN/ZrSiON/SiO_(2) SSAC had been optimized successfully before.Herein,we are focusing on the evaluation and mechanism of thermal stability of this multilayer coating for its potential applications in concentrated solar power(CSP)systems.Fortunately,the coating exhibits excellent thermal stability after aging at 400℃ for 1500 h in vacuum.At aging temperature of 500℃ for 1000 h or 600℃ for 300 h in vacuum,the slight inter-diffusion between Mo layer and stainless steel(SS)substrate occurs.At higher aging temperature of 700℃ for 100 h in vacuum,the serious inter-diffusion between Mo layer and SS substrate leads to invalidation of the coating,which has been evidenced by Rutherford backscattering spectrometry(RBS)and X-ray diffraction(XRD)technologies.Additionally,this coating also has an outstanding thermal stability after aging at 400℃for 300 h in air.A heating-cooling cycling(HCC)treatment evidences the good thermal stability of this coating working in cold environment(60℃).The results reveal that this coating can be a promising candidate not only for CSP system in high temperatures but also for usage in cold environment.展开更多
Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading...Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter(DOM) was investigated in this study. Solar light significantly decreased the UV_(254) absorbance and fluorescence(FLU) intensity of reclaimed water.However, its effect on the dissolved organic carbon(DOC) value of reclaimed water was very limited. The decrease in the UV_(254) absorbance intensity and FLU excitation–emission matrix regional integration volume(FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV_(254) absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV_(254) absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV_(254) and FLU intensity were independent of light intensity. The peaks of the UV_(254) absorbance and FLU intensity with an apparent molecular weight(AMW) of 100 Da to 2000 Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.展开更多
A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickn...A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickness of individual layers were simulated using the Scout software based on the experimentally measured reflectance and transmittance spectra of individual layers. The coating of Mo/NiAlN/NiAlON/SiO_2 with an ideal solar absorptance(α) of 0.945 in the solar spectrum range was designed via the optical constants of each layer in the Scout software. The Mo/NiAlN/NiAlON/SiO_2 coating was deposited via the optimized layer thickness. A good spectral selectivity with absorptance(α=0.936) and emittance(ε=0.09, T=80 ℃) was obtained. This method, which incorporates the optical simulation with the related experiments, provides a convenient approach to obtain the ideal solar selective absorbing coatings.展开更多
A new method of preparing CuO solar selective absorbing coating for medium temperature is presented.After pretreatment,brass was overlaid with CuO by chemical plating.The effects of reactant concentration,reaction tem...A new method of preparing CuO solar selective absorbing coating for medium temperature is presented.After pretreatment,brass was overlaid with CuO by chemical plating.The effects of reactant concentration,reaction tem-perature and reaction time on the absorptivity of CuO coating were investigated.The optimized condition of preparing CuO coating was obtained.The CuO coating was analyzed with X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy(SEM).In order to prolong the period of use,the CuO coating was protected by TiO2.The experi-ment shows that the TiO2/CuO coating is more heat-resistant,acid-resistant,and wear resistant than CuO coating,without losing absorptivity markedly.The TiO2 coating can reduce emissivity and protect the CuO coating.展开更多
Solar energy is abundant and environmentally friendly.Light trapping in solar-energy-harvesting devices or structures is of critical importance.This article reviews light trapping with metallic nanostructures for thin...Solar energy is abundant and environmentally friendly.Light trapping in solar-energy-harvesting devices or structures is of critical importance.This article reviews light trapping with metallic nanostructures for thin film solar cells and selective solar absorbers.The metallic nanostructures can either be used in reducing material thickness and device cost or in improving light absorbance and thereby improving conversion efficiency.The metallic nanostructures can contribute to light trapping by scattering and increasing the path length of light,by generating strong electromagnetic field in the active layer,or by multiple reflections/absorptions.We have also discussed the adverse effect of metallic nanostructures and how to solve these problems and take full advantage of the light-trapping effect.展开更多
基金Funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2018YFB1501002)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHD2020-001)。
文摘Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’-sialon/SiC sample with 60 wt% silicon carbide sintered at 1 600 ℃ exhibited excellent mechanical properties,with apparent porosity of 16.01%,bulk density of 2.06 g·cm^(-3),bending strength of 52.63 MPa,and thermal expansion coefficient of 5.83×10-6 ℃^(-1).The oxide film formed on the surface was linked closely to O’-sialon,so the oxide film was not easily broken.After 100 h oxidization,the sample surface was smoother and denser,with oxidation weight gain rate 23.6 mg/cm^(2) and oxidation rate constant 2.0 mg^(2)·cm^(-4)·h^(-1).Therefore,the sample had the excellent high-temperature oxidation resistance.It was confirmed that the in-situ sialon/SiC composites could be a promising candidate for solar absorber owing to its high-temperature oxidation resistance.
基金Funded by the Natural Science Foundation of Shanxi Province of China(Nos.202303021221177 and 202103021224063)the National Natural Science Foundation of China(No.52002159)。
文摘A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.
基金supported by the National Natural Science Foundation of China(Grant No.51336003)the 333 Scientific Research Project of Jiangsu Province(Grant No.BRA2011134)
文摘Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.
基金supported by the National Natural Science Foundation of China(Grant No.51778350)The Research Center for Australia,Sichuan Province(Grant No.ADLY2021-006)the Chengdu Key Research Base of Philosophy and Social Science(CCRC2020-4)。
文摘As a solution for solar heating, the low-cost and long-life vanadium-titanium black ceramic solar absorbers have been used in rural construction. However, in contrast to its high absorptance(0.93-0.97), ceramic also has high emissivity(approximately 90%) and low thermal conductivity(1.3 W/(m·K)). Without a glaze covering, ceramic absorbers cannot meet the industrial standard. This paper assumes that glaze covering can be substituted by insulation film in a solar greenhouse. To verify this assumption, field experiments were conducted. First, a traditional greenhouse in the Tacheng Basin, a severely cold area in China, was renovated to improve its passive thermal performance. Then, 90 m^(2) of ceramic absorbers and floor coils as well as a water tank were installed inside the greenhouse, which made the entire construction act as an integrated solar collector. This heat collection and release system moderately increased the indoor air temperature(0.9℃-22.4℃) and substantially increased the soil temperature(15.5℃-31.2℃). The average daily useful heat gain under a daily solar insolation value of 17 MJ/m^(2) was 13.8 MJ, and the mean value of the collection efficiency was 0.81. Furthermore, the payback time of the project(7 years) is short, which is principally due to the low cost of ceramic materials and the financial savings of the shared construction components(e.g., transparent cover, metal frame and extra insulation). In conclusion, the main contribution of this study is the verification that it is feasible to replace glaze covering with insulation film in a novel greenhouse-integrated vanadium-titanium black ceramic solar system.
基金The authors acknowledge support from the Ten Thousand Talents Plan of Zhejiang Province-Science and Technology Innovation Leader Project(Grant No.2018R52006)National Natural Science Foundation of China(Grant No.11705269,U1732115)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY17E020012,LY19A040004)the program for Ningbo Municipal Science and Technology Innovative Research Team(Grant No.2016B10005).
文摘Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the effects of fine nanoparticle structural features on the light-matter interactions in nanocermet layers and corresponding cermet-based solar absorbers are still not well clear until now.Herein,we report a systematical investigation on the effects of W(tungsten)nanoparticle sizes,its concentrations and configurations in an alumina matrix on the optical responses of WeAl_(2)O_(3) nanocermet layers and a solar absorber with double-cermet layers.It is found that to possess admirable light absorption features at high temperatures,it is better to maintain the fine particle size of less than 10 nm,isolated states and suitable separations between them for WeAl_(2)O_(3) nanocermets.Thus,the dominated intrinsic absorption of W NPs,their plasmonic excitation and coupling effects among each other all contribute significantly to the broadband optical performance of the cermet layers and the whole absorber.More importantly,this study demonstrates a valuable criterion for maintaining optical performances of nanocermet layers and cermet-based solar absorbers under heating and thus their thermal robustness.
基金Supported by the National Natural Science Foundation of China under Grant No 61275174the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20100162110068
文摘A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gallium arsenide (GaAs) plane in the top layer. The simulated results show that a perfect absorption in the region from 481.2 to 684.0THz can be obtained for either transverse electric or magnetic polarization wave due to the coupling effect between the material of GaAs and gold. The metamaterial is ultra-thin, having the total thickness of 56nm, which is less than one-tenth resonance wavelength, and the absorption coefficients at the three resonance wavelengths are above 90%. Moreover, the effective medium theory, electric field and surface current distributions are adopted to explain the physical mechanism of the absorption, and the permittivity sensing applications are also discussed. As a result, the proposed structure can be used in many areas, such as solar cell, sensors, and integrated photodetectors.
基金This workwas financially supported by the regional key projects of science and technology service network program of Chinese Academy of Sciences(KFJ-STS-QYZD-139)the Youth Innovation Promotion Association CAS(2018455)the Major Science and Technology Projects of Gansu Province(20ZD7GF011).
文摘With the development of new materials and technology,high entropy alloy(HEA)nitride films have attracted much attention of researchers due to their excellent optical properties and mechanical properties.Herein,a novel SS/NbMoTaWN(HEAN)/NbMoTaWON(HEAON)/SiO_(2) coatings are prepared,which shows a high spectral selectivity of a/ε=0.944/0.12.The preparation and optimization of the coating are studied by combining experiments with ellipsometric program and CODE software.High temperature thermal stability test is performed in depth,which proves that the coating could bear 400℃ in air for 2 h,and 600℃for 2 h in vacuum.Long-term thermal stability researches indicate that the SSACs still keep good optical properties(a=0.902,ε=0.106)even after annealing at 600℃ for 100 h.The failure mechanism is analyzed by XRD and Raman spectra.In addition,neutral salt spray test is performed to investigate the anti-corrosion ability,which indicates the coating has a good optical performance after soaking in 3.5 wt%NaCl solution for 30 days.Obviously,this work provides a new strategy to construct solar absorber coatings based on NbMoTaW high entropy alloy.
基金Funded by the National Natural Science Foundation of China(No.51402208)the Project by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(No.2016-KF-11)
文摘The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.
基金Funded by the "863" Hi-Tech Project of China(No.2009AA05Z440)
文摘TiAIN solar selective absorbing coatings which were deposited on 304L stainless steel using cathodic arc evaporation method were annealed under non-vacuum at different temperatures with different times. The optical properties (absorptance and emittance) of the coatings were measured by a spectrophotometer. It was found that, after being annealed for 2 hours at different temperatures, the absorptance of the coatings reached the highest value of 0.92 at 700 ℃ while the emittance got the lowest value of 0.38 at 800 ℃. When the coatings were annealed at 600 ℃ for 24 hours, the optical properties changed to 0.92/0.44 (absorptance/ emittance). By measuring the structure, morphology, elements and surface roughness of the coatings, it was found that both the elemental composition and the surface roughness of the coatings changed as a result of annealing, and these changes caused the change of the optical properties of the coatings.
文摘Two types of resonance absorbers, i.e., Salis- bury screens and Jaumann absorbers are systematically investigated in solar radiation absorption. Salisbury screen is a metal-dielectric-metal structure which overcomes the drawback of bulky thickness for solar spectrum. Such structures have a good spectral selective absorption property, which is also insensitive to incident angles and polarizations. To further broaden absorption bandwidth, more metal and dielectric films are taken in the structure to form Jaumann absorbers. To design optimized structural parameters, the admittance matching equations have been derived in this paper to give good initial structures, which are valuable for the following optimization. Moreover, the analysis of admittance loci has been conducted to directly show the effect of each layer on the spectral absorptivity, and then the effect of thin films is well understood. Since the fabrication of these layered absorbers is much easier than that of other nanostructured absorbers, Salisbury screen and Jaumann absorbers have a great potential in large-area applications.
基金supported by the Youth Innovation Promotion Association CAS(2018455)the regional key projects of science and technology service network program of Chinese Academy of Sciences(KFJ-STS-QYZD-139)+1 种基金the National Natural Science Foundation of China(No.51402315)the Key Research&Development Program in Gansu(18YF1GA125)and Scientific Research Project of Colleges and Universities in Gansu Province(No.2018D-03).The characterization results were supported by Beijing Zhongkebaice Technology Service Co.,Ltd.
文摘High entropy alloys(HEAs),which is at the expense of high cost compared to traditional alloy,should not be confined to the mechanical properties,but should be employed to devise a novel combination with unique functional and mechanical performances.In this work,high entropy alloy nitride(HEAN)is utilized as a novel double absorption layer to improve solar absorption in the high temperature solar selective absorbing coatings(SSACs).Our primary motivation is to lower thermal emittance(ε)and enhance solar absorptance(a).In order to realize this goal,coating design(CODE)software is employed to design and optimize the proposed HEAN based SSACs using appropriate dielectric function model.The ultimate as-deposited coating shows good optical properties with a high a value of 0.965 and a lowεvalue of 0.086(at 82C).The estimate of thermal stability tests indicates that HEAN based SSACs has the ability to resist instability in high working temperature,which keeps good optical properties(a¼0.925,ε¼0.070)after annealing at 600C for 10 h.
基金supported by the National Natural Science Foundation of China(Grant No.51172067)the Hunan Provincial Natural Science Fund for Distinguished Young Scholars,China(Grant No.13JJ1013)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130161110036)the New Century Excellent Talents in University,China(Grant No.NCET-12-0171.D)
文摘We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.
基金supported by National Natural Science Foundation of China(Grant no.51801178).
文摘Solar selective absorbing coatings directly harvest solar energy in the form of heat.The higher temperatures are required to drive higher power-cycle efficiencies in favor of lower costs of energy.According to different dielectrics,high temperature coatings can mainly be divided to double cermet solar selective coatings,transition metal nitride multilayer coatings and transition metal oxide multilayer coatings.This paper assesses the photothermal conversion efficiency and thermal stability,and discusses the challenges and strategies of improving both thermal and optical properties.Double cermet layers can stabilize nanocrystalline structures by alloying,while transition metal nitride/oxide layers generally choose the reliable materials with superior mechanical properties and thermal stability.The purpose of this review is to get the optimized systems,and propose further research directions at higher temperature,such as all-ceramic absorbing coatings.
基金the financial support by the National Natural Science Foundation of China(NSFC)(Nos.51732001,U1832219 and 51972013)Beijing Natural Science Foundation(No.2182035)the Fundamental Research Funds for the Central Universities.
文摘Solar selective absorbing coatings(SSACs)are required to have not only excellent optical property but also outstanding thermal stability for high temperature applications.The optical properties of Mo/ZrSiN/ZrSiON/SiO_(2) SSAC had been optimized successfully before.Herein,we are focusing on the evaluation and mechanism of thermal stability of this multilayer coating for its potential applications in concentrated solar power(CSP)systems.Fortunately,the coating exhibits excellent thermal stability after aging at 400℃ for 1500 h in vacuum.At aging temperature of 500℃ for 1000 h or 600℃ for 300 h in vacuum,the slight inter-diffusion between Mo layer and stainless steel(SS)substrate occurs.At higher aging temperature of 700℃ for 100 h in vacuum,the serious inter-diffusion between Mo layer and SS substrate leads to invalidation of the coating,which has been evidenced by Rutherford backscattering spectrometry(RBS)and X-ray diffraction(XRD)technologies.Additionally,this coating also has an outstanding thermal stability after aging at 400℃for 300 h in air.A heating-cooling cycling(HCC)treatment evidences the good thermal stability of this coating working in cold environment(60℃).The results reveal that this coating can be a promising candidate not only for CSP system in high temperatures but also for usage in cold environment.
基金funded by the National Science Fund of China (Nos. 51138006, 51290284)the National High-Tech R&D Program (863) of China (No. 2013AA065205)+1 种基金the Key Science and Technology Project of Shenzhen Water AuthorityThe Collaborative Innovation Center for Regional Environmental Quality also supported this research
文摘Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter(DOM) was investigated in this study. Solar light significantly decreased the UV_(254) absorbance and fluorescence(FLU) intensity of reclaimed water.However, its effect on the dissolved organic carbon(DOC) value of reclaimed water was very limited. The decrease in the UV_(254) absorbance intensity and FLU excitation–emission matrix regional integration volume(FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV_(254) absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV_(254) absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV_(254) and FLU intensity were independent of light intensity. The peaks of the UV_(254) absorbance and FLU intensity with an apparent molecular weight(AMW) of 100 Da to 2000 Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.
基金National Natural Science Foundation of China (No.51172012 and No.51472017)State Key Lab of Advance Metals and Materials (2014-ZD03)Foundation of Beijing Municipal Science & Technology Commission
文摘A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickness of individual layers were simulated using the Scout software based on the experimentally measured reflectance and transmittance spectra of individual layers. The coating of Mo/NiAlN/NiAlON/SiO_2 with an ideal solar absorptance(α) of 0.945 in the solar spectrum range was designed via the optical constants of each layer in the Scout software. The Mo/NiAlN/NiAlON/SiO_2 coating was deposited via the optimized layer thickness. A good spectral selectivity with absorptance(α=0.936) and emittance(ε=0.09, T=80 ℃) was obtained. This method, which incorporates the optical simulation with the related experiments, provides a convenient approach to obtain the ideal solar selective absorbing coatings.
基金supported by the Analysis Centre of Tianjin University.
文摘A new method of preparing CuO solar selective absorbing coating for medium temperature is presented.After pretreatment,brass was overlaid with CuO by chemical plating.The effects of reactant concentration,reaction tem-perature and reaction time on the absorptivity of CuO coating were investigated.The optimized condition of preparing CuO coating was obtained.The CuO coating was analyzed with X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy(SEM).In order to prolong the period of use,the CuO coating was protected by TiO2.The experi-ment shows that the TiO2/CuO coating is more heat-resistant,acid-resistant,and wear resistant than CuO coating,without losing absorptivity markedly.The TiO2 coating can reduce emissivity and protect the CuO coating.
基金The work performed at the University of Houston was funded by the US Department of Energy under contract number DOE DE-FG02-13ER46917/DESC0010831and the work performed at the National Center for Nanoscience&Technology of China was supported by the funds of NSFC(10974037)+2 种基金NBRPC(2010CB934102)International S&T Cooperation Program(2010DFA51970)the‘Strategic Priority Research Program’of the Chinese Academy of Sciences(Grant No.XDA09020300).
文摘Solar energy is abundant and environmentally friendly.Light trapping in solar-energy-harvesting devices or structures is of critical importance.This article reviews light trapping with metallic nanostructures for thin film solar cells and selective solar absorbers.The metallic nanostructures can either be used in reducing material thickness and device cost or in improving light absorbance and thereby improving conversion efficiency.The metallic nanostructures can contribute to light trapping by scattering and increasing the path length of light,by generating strong electromagnetic field in the active layer,or by multiple reflections/absorptions.We have also discussed the adverse effect of metallic nanostructures and how to solve these problems and take full advantage of the light-trapping effect.