期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
1
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Photoelectrochemical regeneration of all vanadium redox species for construction of a solar rechargeable flow cell 被引量:2
2
作者 Shichao Liao Jingying Shi +5 位作者 Chunmei Ding Mingyao Liu Fengqiang Xiong Nan Wang Jian Chen Can Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期278-282,共5页
Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration... Energy storage is pivotal for the continuous utilization of solar energy suffering from the intermittency issue. Herein, we demonstrate a solar rechargeable flow cell(SRFC) based on photoelectrochemical regeneration of vanadium redox species for in-situ solar energy harvest and storage. In this device, TiO_2 and MWCNT/acetylene black(MWCNT/AB) composite are served as the photoanode and the counter electrode,respectively, with all vanadium redox couples, VO_2~+/VO^(2+)and VO^(2+)/V^(3+), as solar energy storage media.Benefitting from solar energy, the cell can be photocharged under a bias as low as 0.1 V, which is much lower than the discharge voltage of ~0.5 V. Photocharged under the optimized condition, the cell delivers a discharge energy of 23.0 mWh/L with 67.4% input electric energy savings. This prototype work may inspire the rational design for cost-effective solar energy storage devices. 展开更多
关键词 Photoelectrocatalysis Vanadium species Photocharge solar energy storage
下载PDF
High Solar Energy Absorption and Human Body Radiation Reflection Janus Textile for Personal Thermal Management
3
作者 Liang Fei Weidong Yu +2 位作者 Jialing Tan Yunjie Yin Chaoxia Wang 《Advanced Fiber Materials》 SCIE EI 2023年第3期955-967,共13页
A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body ra... A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature(THS)regulation.We demonstrate a visible Janus light absorbent/reflective air-layer fabric(Janus A/R fabric)that can passively reflect radiative heating meanwhile can actively capture the solar energy.A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy.The THS covered by Janus A/R fabric can be heated up to~3.7°C higher than that covered by air-layer fabric in cold environment(5°C).Besides,integrating the thermo-and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy,respectively.According to the colour monitors,intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently. 展开更多
关键词 Molecular solar energy storage AZOBENZENE Infrared reflectance Personal energy management textile Colour change
原文传递
Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system 被引量:2
4
作者 Yongliang Li Sanjeeva Witharana +3 位作者 Hui Cao Mathieu Lasfargues Yun Huang Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期39-44,共6页
This paper proposes a power system concept that integrates photovoltaic (PV) and thermoelectric (TE) technologies to harvest solar energy from a wide spectral range. By introduction of the 'spectrum beam splittin... This paper proposes a power system concept that integrates photovoltaic (PV) and thermoelectric (TE) technologies to harvest solar energy from a wide spectral range. By introduction of the 'spectrum beam splitting' technique, short wavelength solar radiation is converted directly into electricity in the PV cells, while the long wavelength segment of the spectrum is used to produce moderate to high temperature thermal energy, which then generates electricity in the TE device. To overcome the intermittent nature of solar radiation, the system is also coupled to a thermal energy storage unit. A systematic analysis of the integrated system is carried out, encompassing the system configuration, material properties, thermal management, and energy storage aspects. We have also attempted to optimize the integrated system. The results indicate that the system configuration and optimization are the most important factors for high overall efficiency. 展开更多
关键词 solar power Photovoltaic panel Spectrum beam splitting Thermoelectric generator energy storage
原文传递
一种新型太阳能热电化学耦合甲烷重整制氢脱碳与太阳能储能方法
5
作者 郭轲 刘明恺 +4 位作者 王彬 娄佳慧 郝勇 裴刚 金红光 《Science Bulletin》 SCIE EI CAS CSCD 2024年第8期1109-1121,共13页
Hydrogen is widely regarded as a sustainable energy carrier with tremendous potential for low-carbon energy transition.Solar photovoltaic-driven water electrolysis(PV-E)is a clean and sustainable approach of hydrogen ... Hydrogen is widely regarded as a sustainable energy carrier with tremendous potential for low-carbon energy transition.Solar photovoltaic-driven water electrolysis(PV-E)is a clean and sustainable approach of hydrogen production,but with major barriers of high hydrogen production costs and limited capacity.Steam methane reforming(SMR),the state-of-the-art means of hydrogen production,has yet to overcome key obstacles of high reaction temperature and CO_(2)emission for sustainability.This work proposes a solar thermo-electrochemical SMR approach,in which solar-driven mid/low-temperature SMR is combined with electrochemical H_(2)separation and in-situ CO_(2)capture.The feasibility of this method is verified experimentally,achieving an average methane conversion of 96.8%at a dramatically reduced reforming temperature of 400-500℃.The underlying mechanisms of this method are revealed by an experimentally calibrated model,which is further employed to predict its performance for thermoelectrochemical hydrogen production.Simulation results show that a net solar-to-H_(2)efficiency of26.25%could be obtained at 500℃,which is over 11 percentage points higher than that of PV-E;the first-law thermodynamic efficiency reaches up to 63.27%correspondingly.The enhanced efficiency also leads to decreased fuel consumption and lower CO_(2)emission of the proposed solar-driven SMR system.Such complementary conversion of solar PV electricity,solar thermal energy,and low-carbon fuel provides a synergistic and efficient means of sustainable H_(2)production with potentially long-term solar energy storage on a vast scale. 展开更多
关键词 Hydrogen solar fuel Thermo-electrochemical conversion Decarbonization solar energy storage
原文传递
Entire onion source-derived redox porous carbon electrodes towards efficient quasi-solid-state solar charged hybrid supercapacitor
6
作者 Edugulla Girija Shankar Amit Kumar Das Jae Su Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第30期118-127,共10页
Biomass-derived electrodes inherently containing redox-active species have gained extensive attention recently due to their availability,eco-friendliness,sustainability,and low cost.We report novel binder-free faradic... Biomass-derived electrodes inherently containing redox-active species have gained extensive attention recently due to their availability,eco-friendliness,sustainability,and low cost.We report novel binder-free faradic surface redox onion-derived carbon positive electrode with nano regime particles by hydrothermal synthesis and Na^(+)and Cl^(−)ions diffused porous carbon negative electrode via a carbonization method.Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of oxidized sulfur and(N-6)pyridinic N-based redox groups inherently present in the as-prepared compounds.The electrochemical analysis of the positive electrode revealed its faradic redox type of energy storage mechanism with an excellent specific capacitance of 1805 Fg^(-1) at the current density of 3 Ag^(-1) as well as appreciable long-term cycling stability(76.8%retention after 10000 charge-discharge cycles).Meanwhile,the negative electrode exhibited a maximum specific capacitance of 373 Fg^(-1) at 1 Ag^(-1) with outstanding long-term cycling stability(100.7%retention after 10000 cycles).The fabricated polyvinyl alcohol-potassium hydroxide gel electrolyte-based quasi-solid-state hybrid supercapacitor(QHSC)delivered excellent energy density and power density of 19.94 Wh kg^(-1) and 374.99 W kg^(-1),respectively with an ultralong cyclic life(102.3% retention)over 10000 cycles.Furthermore,the QHSC was connected to a solar panel to store renewable energy.Solar charged QHSC effectively powered a speedometer,enlightening its potential application in advanced sustainable energy storage systems. 展开更多
关键词 Binder-free Biomass Green source Hybrid supercapacitor solar energy storage Faradic redox type
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部