In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coup...In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.展开更多
This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs...This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs, polar expeditions, and hunters in addition to airplanes and satellites in recent times. Our main result is that the BIE position alternates between a southern and a northern position followed by Gulf Stream Beats (GSBs) at the occurrence of deep solar minima. We decompose the low frequency BIE position variations in cycles composed of dominant periods which are related to the Jose period of 179 years, indicating planetary forcings. We propose that the mechanism transferring planetary signals into changes in BIE position is the solar wind (SW), which provides magnetic shielding of the Earth in addition to geomagnetic disturbances. Increase in the solar wind produces pressure which decelerates the Earth’s rotation. It also transfers electrical energy to the ring current in the earth’s magnetosphere. This current magnetizes the earth’s solid core and makes it rotate faster. To conserve angular momentum the earth’s outer fluid mantle rotates slower with a delay of about 100 years. In addition will geomagnetic storms, initiated by solar coronal mass ejections (CMEs) penetrate deep in the Earth’s atmosphere and change pressure pattern in the Arctic. This effect is larger during solar minima since the magnetic shielding then is reduced. The Arctic may then experience local warming. The transition of solar activities to a possibly deep and long minimum in the present century may indicate Arctic cooling and the BIE moving south this century. For the North Atlantic region, effects of the BIE expanding southward will have noticeable consequences for the ocean bio-production from about 2040.展开更多
Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmoni...Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.展开更多
This paper uses two subsets of ensemble historical-Nat simulations and pi-Control simulations from CMIP5 as well as observational/reanalysis datasets to investigate responses of the tropical Pacific to the 11-yr solar...This paper uses two subsets of ensemble historical-Nat simulations and pi-Control simulations from CMIP5 as well as observational/reanalysis datasets to investigate responses of the tropical Pacific to the 11-yr solar cycle.A statistically significant 11-yr solar signal is found in the upper-ocean layers above the thermocline and tropospheric circulations.A warming response initially appears in the upper layers of the central equatorial Pacific in the solar maximum years in observations,then increases and shifts into the eastern Pacific at lagged 1-3 yr.Meanwhile,an anomalous updraft arises over the western equatorial Pacific and shifts eastwards in the following years with anomalous subsidence over the Maritime Continent.These lagged responses are confirmed by the historical-Nat simulations,except that the initial signal is located more to the west and all the responses are weaker than the observed.A simplified mixed-layer heat budget analysis based on the historical-Nat simulations suggests that the atmospheric forcing,especially the shortwave radiation,is the major contributor to the initial warming response,and the ocean heat transport effect is responsible for the eastward displacement of the lagged warming responses.In the solar maximum years,the zonal ocean temperature gradient in the western-central Pacific is reduced by the initial warming,and anomalous westerly winds appear over the western equatorial Pacific and extend into the eastern Pacific during the lagged years.These anomalous westerly winds reduce the wind-driven ocean dynamical transport,resulting in the initial warming in the central equatorial Pacific being amplified and the surface warming shifting eastward during the lagged 1-3 yr.展开更多
In this study,idealized simulations are conducted to investigate potential influences of solar radiation on the tropical cyclone(TC) recurvature at higher latitudes.Results indicate that TC track is sensitive to the s...In this study,idealized simulations are conducted to investigate potential influences of solar radiation on the tropical cyclone(TC) recurvature at higher latitudes.Results indicate that TC track is sensitive to the seasonal variation of radiative forcing at higher latitudes.In the absence of a background flow,TCs at higher latitudes tend to recurve(remain northwestward) in the cold(warm) season.This feature is an additional aspect of the so-called intrinsic recurvature property of TC movement at high latitude.Physically,the greater meridional gradient of temperature in the cold season due to solar radiative forcing would induce a larger thermal wind,which affects the upper-level anticyclonic circulation and associated outflow.The structure changes of TC,mainly at upper-levels,modulate the steering flow for TC,leading to a higher probability of TCs at higher latitudes to recurve in the cold season than in the warm season.展开更多
A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar ...A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar sails are large flexible membranes. In this study, the deformed sails are modeled as smooth curved surfaces and a general total force model (GTFM) for the deformed sails is proposed. Various simplified versions of this GTFM are also derived for the symmetric deformation cases. Furthermore, differences between the ideal force models and our precise GTFM are investigated. The numerical results demonstrate that both the previous ideal reflected model and flat optical model are not as satisfactory as claimed before, by contrast with the actual dynamics from the GTFM. Thus this work paves the way for sail craft's precise navigation where exact forces are needed.展开更多
Occurrence or absence of centennial-scale climatic variability during Marine Isotope Stage(MIS)7e,the first peak interval of the Penultimate Interglacial,remains ambiguous due to the limited available high-resolved re...Occurrence or absence of centennial-scale climatic variability during Marine Isotope Stage(MIS)7e,the first peak interval of the Penultimate Interglacial,remains ambiguous due to the limited available high-resolved records.Here,we present a decadal-resolved stalagmiteδ^(18)O record from northern China spanning from 242.3 to 236.8 ka BP,covering MIS7e.The composite KLSδ^(18)O record,integrating this study with the previous record in the same cave,shows a descending trend from TerminationⅢto MIS7e,which follows the increasing Northern Hemisphere summer insolation(NHSI).This observation further emphasizes the important influence of NHSI on the glacial/interglacial transition.There are more large-amplitude,millennial-to centennial-scale variability occurring during TerminationⅢcompared with MIS7e,implying that ice-sheet decay potentially plays an important role in climatic excursions.Four centennial-scale summer monsoon collapses,peaking at~242.1,~240.8,~239.3 and~238.2 ka BP,are detected in our new record,indicating the pervasiveness of the intra-interglacial climatic instability.Given the lack of solar activity and freshwater outbursts data during MIS7e,it is not possible to conclude about the drivers of the identified abrupt climatic anomalous.Following the dynamic mechanisms of sub-millennial climatic anomalous during early Holocene,we tentatively propose that slowdown of the meridional overturning circulation caused by freshwater fluxes into North Atlantic and/or attenuated solar irradiance is the potential forcing for the abrupt climate events within MIS7e.Additionally,attenuated solar irradiance could also result in climatic anomalies through low-latitude processes.展开更多
Milankovitch Theory shows that glacial-interglacial cycles in the Quaternary are related to the variation of solar insolation forcing linked to the earth's astronomical parameters.However,the summer insolation at nor...Milankovitch Theory shows that glacial-interglacial cycles in the Quaternary are related to the variation of solar insolation forcing linked to the earth's astronomical parameters.However,the summer insolation at northern high latitudes,usually considered as the main external forcing for the ice age as Milankovitch pointed out,is marked by the 19- and 23-ka precession periodicities,which is not consistent with the glacial-interglacial cycles.On the other hand,recent studies indicate that the annual mean insolation dominated by the obliquity is also an important external forcing in glacial cycles.In this paper,it is assumed that the glacial oscillation is regulated simultaneously by the annual mean insolation at northern high latitudes related to obliquity and the noon insolation at summer solstice at the ice-line latitude related to precession. Only when both of them exceed some thresholds,does the ice sheet start to melt continuously to induce the global warming and deglaciation.Furthermore,the periodicity transition of glacial cycles at mid-Pleistocene was a natural change when the ice sheet thickness altered.A conceptual model based on this idea gives encouraging results compared with the isotopic data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41575086 and 41661144005)the CAS–PKU(Chinese Academy of Sciences–Peking University)Joint Research Program
文摘In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.
文摘This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs, polar expeditions, and hunters in addition to airplanes and satellites in recent times. Our main result is that the BIE position alternates between a southern and a northern position followed by Gulf Stream Beats (GSBs) at the occurrence of deep solar minima. We decompose the low frequency BIE position variations in cycles composed of dominant periods which are related to the Jose period of 179 years, indicating planetary forcings. We propose that the mechanism transferring planetary signals into changes in BIE position is the solar wind (SW), which provides magnetic shielding of the Earth in addition to geomagnetic disturbances. Increase in the solar wind produces pressure which decelerates the Earth’s rotation. It also transfers electrical energy to the ring current in the earth’s magnetosphere. This current magnetizes the earth’s solid core and makes it rotate faster. To conserve angular momentum the earth’s outer fluid mantle rotates slower with a delay of about 100 years. In addition will geomagnetic storms, initiated by solar coronal mass ejections (CMEs) penetrate deep in the Earth’s atmosphere and change pressure pattern in the Arctic. This effect is larger during solar minima since the magnetic shielding then is reduced. The Arctic may then experience local warming. The transition of solar activities to a possibly deep and long minimum in the present century may indicate Arctic cooling and the BIE moving south this century. For the North Atlantic region, effects of the BIE expanding southward will have noticeable consequences for the ocean bio-production from about 2040.
文摘Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.
基金Supported by the National Key Basic Research and Development(973)Program of China(2012CB957804)Project from State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(LTO1916)+1 种基金National Natural Science Foundation of China(42075040)Science and Technology Project of State Grid Corporation of China(SGCC,NY71-19-013)。
文摘This paper uses two subsets of ensemble historical-Nat simulations and pi-Control simulations from CMIP5 as well as observational/reanalysis datasets to investigate responses of the tropical Pacific to the 11-yr solar cycle.A statistically significant 11-yr solar signal is found in the upper-ocean layers above the thermocline and tropospheric circulations.A warming response initially appears in the upper layers of the central equatorial Pacific in the solar maximum years in observations,then increases and shifts into the eastern Pacific at lagged 1-3 yr.Meanwhile,an anomalous updraft arises over the western equatorial Pacific and shifts eastwards in the following years with anomalous subsidence over the Maritime Continent.These lagged responses are confirmed by the historical-Nat simulations,except that the initial signal is located more to the west and all the responses are weaker than the observed.A simplified mixed-layer heat budget analysis based on the historical-Nat simulations suggests that the atmospheric forcing,especially the shortwave radiation,is the major contributor to the initial warming response,and the ocean heat transport effect is responsible for the eastward displacement of the lagged warming responses.In the solar maximum years,the zonal ocean temperature gradient in the western-central Pacific is reduced by the initial warming,and anomalous westerly winds appear over the western equatorial Pacific and extend into the eastern Pacific during the lagged years.These anomalous westerly winds reduce the wind-driven ocean dynamical transport,resulting in the initial warming in the central equatorial Pacific being amplified and the surface warming shifting eastward during the lagged 1-3 yr.
基金Supported by the National Natural Science Foundation of China (42175003 and 42088101)。
文摘In this study,idealized simulations are conducted to investigate potential influences of solar radiation on the tropical cyclone(TC) recurvature at higher latitudes.Results indicate that TC track is sensitive to the seasonal variation of radiative forcing at higher latitudes.In the absence of a background flow,TCs at higher latitudes tend to recurve(remain northwestward) in the cold(warm) season.This feature is an additional aspect of the so-called intrinsic recurvature property of TC movement at high latitude.Physically,the greater meridional gradient of temperature in the cold season due to solar radiative forcing would induce a larger thermal wind,which affects the upper-level anticyclonic circulation and associated outflow.The structure changes of TC,mainly at upper-levels,modulate the steering flow for TC,leading to a higher probability of TCs at higher latitudes to recurve in the cold season than in the warm season.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10902056 and 10832004)
文摘A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar sails are large flexible membranes. In this study, the deformed sails are modeled as smooth curved surfaces and a general total force model (GTFM) for the deformed sails is proposed. Various simplified versions of this GTFM are also derived for the symmetric deformation cases. Furthermore, differences between the ideal force models and our precise GTFM are investigated. The numerical results demonstrate that both the previous ideal reflected model and flat optical model are not as satisfactory as claimed before, by contrast with the actual dynamics from the GTFM. Thus this work paves the way for sail craft's precise navigation where exact forces are needed.
基金supported by the National Natural Science Foundation of China (Grant Nos.42172208,41772184&41731174)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB26020000)。
文摘Occurrence or absence of centennial-scale climatic variability during Marine Isotope Stage(MIS)7e,the first peak interval of the Penultimate Interglacial,remains ambiguous due to the limited available high-resolved records.Here,we present a decadal-resolved stalagmiteδ^(18)O record from northern China spanning from 242.3 to 236.8 ka BP,covering MIS7e.The composite KLSδ^(18)O record,integrating this study with the previous record in the same cave,shows a descending trend from TerminationⅢto MIS7e,which follows the increasing Northern Hemisphere summer insolation(NHSI).This observation further emphasizes the important influence of NHSI on the glacial/interglacial transition.There are more large-amplitude,millennial-to centennial-scale variability occurring during TerminationⅢcompared with MIS7e,implying that ice-sheet decay potentially plays an important role in climatic excursions.Four centennial-scale summer monsoon collapses,peaking at~242.1,~240.8,~239.3 and~238.2 ka BP,are detected in our new record,indicating the pervasiveness of the intra-interglacial climatic instability.Given the lack of solar activity and freshwater outbursts data during MIS7e,it is not possible to conclude about the drivers of the identified abrupt climatic anomalous.Following the dynamic mechanisms of sub-millennial climatic anomalous during early Holocene,we tentatively propose that slowdown of the meridional overturning circulation caused by freshwater fluxes into North Atlantic and/or attenuated solar irradiance is the potential forcing for the abrupt climate events within MIS7e.Additionally,attenuated solar irradiance could also result in climatic anomalies through low-latitude processes.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40875043 and 40631002the National Program on Key Basic Research of China(2010CB428506)
文摘Milankovitch Theory shows that glacial-interglacial cycles in the Quaternary are related to the variation of solar insolation forcing linked to the earth's astronomical parameters.However,the summer insolation at northern high latitudes,usually considered as the main external forcing for the ice age as Milankovitch pointed out,is marked by the 19- and 23-ka precession periodicities,which is not consistent with the glacial-interglacial cycles.On the other hand,recent studies indicate that the annual mean insolation dominated by the obliquity is also an important external forcing in glacial cycles.In this paper,it is assumed that the glacial oscillation is regulated simultaneously by the annual mean insolation at northern high latitudes related to obliquity and the noon insolation at summer solstice at the ice-line latitude related to precession. Only when both of them exceed some thresholds,does the ice sheet start to melt continuously to induce the global warming and deglaciation.Furthermore,the periodicity transition of glacial cycles at mid-Pleistocene was a natural change when the ice sheet thickness altered.A conceptual model based on this idea gives encouraging results compared with the isotopic data.