Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism ...Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces. The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction. It is believed the photon catalysis mechanism is unlversall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.展开更多
Recently, Chen and his team were active in the theoretical and practical study of a new heliostat for the use of solar energy. This work represents the first innovation in the area of heliostats after many years of li...Recently, Chen and his team were active in the theoretical and practical study of a new heliostat for the use of solar energy. This work represents the first innovation in the area of heliostats after many years of little progress. The mathematical development of the tracking and concentration optics principles, and the practical implementation and demonstration of the technology, are both very interesting advances in this field. Many applications are possible for this technology such as generation of solar electricity and solar industrial process heat.展开更多
Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new...Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new method for extracting boron from silicon with the aid of photo-chemical effect. In this article, we discussed the postulated principle of strong radiation catalysis and the recent development in practice. Starting from ordinary metallurgical silicon, we achieved a purification result of 0.12 ppmw to 0.3 ppmw of boron impurity in silicon by only single pass of a low cost and simple process, the major obstacle to make 'cheap' solar grade silicon feedstock in industry is thus removed.展开更多
文摘Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces. The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction. It is believed the photon catalysis mechanism is unlversall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.
文摘Recently, Chen and his team were active in the theoretical and practical study of a new heliostat for the use of solar energy. This work represents the first innovation in the area of heliostats after many years of little progress. The mathematical development of the tracking and concentration optics principles, and the practical implementation and demonstration of the technology, are both very interesting advances in this field. Many applications are possible for this technology such as generation of solar electricity and solar industrial process heat.
文摘Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new method for extracting boron from silicon with the aid of photo-chemical effect. In this article, we discussed the postulated principle of strong radiation catalysis and the recent development in practice. Starting from ordinary metallurgical silicon, we achieved a purification result of 0.12 ppmw to 0.3 ppmw of boron impurity in silicon by only single pass of a low cost and simple process, the major obstacle to make 'cheap' solar grade silicon feedstock in industry is thus removed.