期刊文献+
共找到4,794篇文章
< 1 2 240 >
每页显示 20 50 100
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:1
1
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Impact of Numerous Beds Operating Conditions for Enhancing the Performance of a Solar Heat-Supported Adsorption Chiller
2
作者 Nusrat Jahan M. Abdul Hakim Khan K. M. Ariful Kabir 《Journal of Applied Mathematics and Physics》 2023年第11期3651-3665,共15页
Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller ... Thermal adsorption cooling systems have gained significant attention due to their potential for energy savings and eco-environmental impact. An analytic investigation of the heat transfer inside an adsorption chiller with various bed silica gel-water pairs is presented. A comprehensive model has been designed to accurately predict the correlation between the overall performance of the proposed chiller system and the functional and structural condition of the building. This model takes into account various factors such as temperature, humidity, and air quality to provide a detailed analysis of the system’s efficiency. At least 20 collectors consisting of a 34.4 m area (each) with a full-cycle time of 480 seconds are essential to improper run conditions. It is necessary to adjust the optimum cycle time for optimal performance. During the investigation, the base condition shows that the cooling capacity is 14 kw, 0.6 COPcycle, and 0.35 COPsolar at noon. Also, conduct a thorough investigation into the chiller’s performance under varying cooling water supply temperatures and various chilled water flow rates. 展开更多
关键词 Adsorption Chillers Adsorption Cooling Multiple Adsorption Beds solar heat
下载PDF
Current situation and development of solar heating technology in China 被引量:5
3
作者 Zheng Ruicheng 《Engineering Sciences》 EI 2009年第2期86-90,共5页
It is introduced the current situation and development for solar heating technology including passive solar heating and solar heating combisystems in China in this paper. Combined with the engineering application proj... It is introduced the current situation and development for solar heating technology including passive solar heating and solar heating combisystems in China in this paper. Combined with the engineering application projects, the author gave the technical and economic analysis of the passive solar and solar heating combisystems in China and summarized the developing obstacle and the spreading tactics for raising marketing of the solar heating in China. 展开更多
关键词 passive solar heating removable night insulation of windows solar heating eombisystems solar fraction
下载PDF
Mechanical Properties and Microstructure of Al_(2)O_(3)/SiC Composite Ceramics for Solar Heat Absorber 被引量:1
4
作者 WU Jianfeng ZHOU Yang +3 位作者 SUN Mengke XU Xiaohong TIAN Kezhong YU Jiaqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期615-623,共9页
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ... Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular. 展开更多
关键词 Al_(2)O_(3)/SiC composite ceramics HARDNESS thermal conductivity solar heat absorption material
下载PDF
Numerical Study on the Suitability of Passive Solar Heating Technology Based on Differentiated Thermal Comfort Demand
5
作者 Xiaona Fan Qin Zhao +1 位作者 Guochen Sang Yiyun Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期627-660,共34页
Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfo... Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands.This work took the rural dwellings in Northwest China as the research object.First,the current indoor and outdoor thermal environment in winter and the mechanism of residents’differentiated demand for indoor thermal comfort were obtained through tests,questionnaires,and statistical analysis.Second,a comprehensive passive optimized design of existing buildings was conducted,and the validity of the optimized combination scheme was explored using DesignBuilder software.Finally,the suitability of passive solar heating technology for each region in Northwest China was analyzed based on residents’differentiated demand for indoor thermal comfort.The regions were then classified according to the suitability of the technology for these.The results showed that the indoor heating energy consumption was high and the indoor thermal environment was not ideal,yet the solar energy resources were abundant.Indoor comfort temperature indexes that match the functional rooms and usage periods were proposed.For the buildings with the optimized combination scheme,the average indoor temperature was increased significantly and the temperature fluctuation was decreased dramatically.Most regions in Northwest China were suitable for the development of passive solar heating technology.Based on the obtained suitability of the technology for the regions of Northwest China,these were classified into most suitable,more suitable,less suitable,and unsuitable regions. 展开更多
关键词 Rural dwellings differentiated thermal comfort demand optimization and simulation statistical analysis passive solar heating technology SUITABILITY
下载PDF
Comparison and Performance Analysis of Heat Storage Equipment in Solar Heating System
6
作者 穆振英 丁玉龙 《Journal of Donghua University(English Edition)》 EI CAS 2013年第3期197-201,共5页
Solar heating system is widely used recently. Heat storage equipment is the guarantee for steady performance of solar heating system. A design of latent heat storage exchanger with submerged coil was introduced with t... Solar heating system is widely used recently. Heat storage equipment is the guarantee for steady performance of solar heating system. A design of latent heat storage exchanger with submerged coil was introduced with the structure, working principle, and the main advantages. This heat exchanger was integrated into solar heating system as the heat storage equipment. Advantage comparison of the designed heat exchanger in solar heating system with hot water tank was carried out. The analysis results show that the latent heat storage exchanger is superior to hot water tank obviously. The heat exchanger performance parameters and variations of these parameters are got: (1) with the increase of phase change material (PCM) volume ratio, heat storage equipment volume ratio decreases; (2) heat storage efficiency has the same varying tendency with outdoor and air temperature; while the bigger PCM volume ratio is, the weaker the effect of outdoor air temperature on heat storage efficiency is; (3) heat storage capacity and heat storage efficiency increase together; when PCM volume ratio is big, heat storage efficiency is high and the system can begin operating effcienfly and quickly; (4) with the increase of heat storage capacity, life cyde operation cost (LCOC) of system increases gradually in high speed; but with the increase of PCM volume ratio, the difference between the two systems LCOCs becomes smaller and smaller; (5) the reasonable range of PCM volume ratio is 0.5 - 0.7. Temperature characteristic analysis shows that, with the filled PCM, heat storage medium temperature presents several segments at different time, under conditions of different heat storage capacity and different PCM state. 展开更多
关键词 solar heating system latent heat storage exchanger with submerged coil hot water tank comparative analysis temperature characteristic
下载PDF
Theoretical and Experimental Investigations of Solar Heating Systems at Specified Output Conditions of Hot Water
7
作者 W. Tadros M. Saadeldin S.A. Hassan 《Journal of Energy and Power Engineering》 2011年第9期842-847,共6页
The theoretical analysis discussed in this work is a suitable mathematical tool by which the performance of the proposed collector can be predicted. The obtained experimental results coincide with the obtained theoret... The theoretical analysis discussed in this work is a suitable mathematical tool by which the performance of the proposed collector can be predicted. The obtained experimental results coincide with the obtained theoretical data obtained from the devised computer program. Controlled output temperature can be obtained from the proposed system. The performance of the tested collector under the proposed intermittent flow conditions overcomes that of the conventional thermosyphone flow collector. 展开更多
关键词 solar collector thermal efficiency thermosyphone intermittent flow mass floW rate solar heating system
下载PDF
Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin 被引量:2
8
作者 YE Ling1,JIANG Yi-qiang1,YAO Yang1,ZHANG Shi-cong2(1.Institute of Heat Pump and Air Conditioning Technology,Harbin Institute of Technology,Harbin,Heilongjiang 150090,China 2.Institute of Built Environment and Energy Efficiency,China Academy of Building Research,Beijing 100013,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期111-114,共4页
This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in t... This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was followed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which decreases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition,the relationship between the solar collector efficiency and storage water temperature is also obtained,it decreases quickly with increasing storing water temperature,and then increases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world. 展开更多
关键词 CENTRAL solar heating SYSTEM with SEASONAL storage(CSHSSS) simulation SYSTEM efficiency STORAGE water tank VILLA
下载PDF
CFD Simulations of Wind Effect on Net Solar Heat Gain of South Walls with Internal Insulation
9
作者 陈文超 钟珂 刘加平 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期355-361,共7页
Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect... Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization. 展开更多
关键词 insulation solar winter directions gains reaches Yangtze Walls assumed heating
下载PDF
Thermal Energy Collection Forecasting Based on Soft Computing Techniques for Solar Heat Energy Utilization System
10
作者 Atsushi Yona Tomonobu Senjyu 《Smart Grid and Renewable Energy》 2012年第3期214-221,共8页
In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative ener... In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data. 展开更多
关键词 NEURAL Network Tree-Based Model Thermal ENERGY COLLECTION Forecasting solar heat ENERGY UTILIZATION SYSTEM
下载PDF
Solar Heater Technologies Selection Using Multi-criteria Analysis
11
作者 Mohsine Bouya Badr Abou El Majd +1 位作者 Merieme Agdid Abdellatif Ben Abdellah 《Journal of Energy and Power Engineering》 2015年第4期393-398,共6页
Regarding sun's potential in Middle East and North Africa zone and particularly in Morocco, we focus our work on the development of the knowledge and information concerning the solar heaters for domestic applications... Regarding sun's potential in Middle East and North Africa zone and particularly in Morocco, we focus our work on the development of the knowledge and information concerning the solar heaters for domestic applications, in order to help the industrial and the consumer to select an adaptive technology. As a result, a Moroccan mapping of solar water heating systems is presented in this work. This mapping concerns two technologies commonly used: the FPC (flat plate collectors) and the ETC (evacuated tubes ones). It is based on three criteria: firstly, the efficiency of the STC (solar thermal collectors); secondly, the economic aspect and at last, the reliability requirements. Based on these information, the multi-criteria outranking methodology PROMETHEE (preference ranking organization method for the enrichment evaluations) allows us to define an adequate solar heater technology linked with the climatic zoning of Morocco. 展开更多
关键词 MAPPING solar water heating flat plate collector evacuated tubes collectors PROMETHEE.
下载PDF
Secondary solar heat gain modelling of spectral-selective glazing based on dynamic solar radiation spectrum 被引量:1
12
作者 Peng Xue Yi Shen +4 位作者 Sheng Ye Jinqing Peng Yanyun Zhang Qianqian Zhang Yuying Sun 《Building Simulation》 SCIE EI CSCD 2023年第12期2211-2224,共14页
The secondary solar heat gain,defined as the heat flows from glazing to indoor environment through longwave radiation and convection,grows with the increasing of glazing absorption.With the rapid development and appli... The secondary solar heat gain,defined as the heat flows from glazing to indoor environment through longwave radiation and convection,grows with the increasing of glazing absorption.With the rapid development and application of spectrally selective glazing,the secondary solar heat gain becomes the main way of glazing heat transfer and biggest proportion,and indicates it should not be simplified calculated conventionally.Therefore,a dynamic secondary solar heat gain model is developed with electrochromic glazing system in this study,taking into account with three key aspects,namely,optical model,heat transfer model,and outdoor radiation spectrum.Compared with the traditional K-Sc model,this new model is verified by on-site experimental measurements with dynamic outdoor spectrum and temperature.The verification results show that the root mean square errors of the interior and exterior glass surface temperature are 3.25°C and 3.33°C,respectively,and the relative error is less than 10.37%.The root mean square error of the secondary heat gain is 13.15 W/m2,and the dynamic maximum relative error is only 13.2%.The simulated and measured results have a good agreement.In addition,the new model is further extended to reveal the variation characteristics of secondary solar heat gain under different application conditions(including orientations,locations,EC film thicknesses and weather conditions).In summary,based on the outdoor spectrum and window spectral characteristics,the new model can accurately calculate the increasing secondary solar heat gain in real time,caused by spectrally selective windows,and will provide a computational basis for the evaluation and development of spectrally selective glazing materials. 展开更多
关键词 econdary solar heat gain spectral-selective glazing solar spectrum dynamic heat transfer
原文传递
Bacterial Cellulose-Based Janus Films with Radiative Cooling and Solar Heating Properties for All-Season Thermal Management
13
作者 Shukuan Shi Cristian Valenzuela +4 位作者 Yanzhao Yang Yuan Liu Binxuan Li Ling Wang Wei Feng 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第20期2611-2618,共8页
Advanced radiative cooling materials with both heating and cooling mode is of pivotal importance for all-season energy-saving in buildings.In this work,we report the design and fabrication of bacterial cellulose-based... Advanced radiative cooling materials with both heating and cooling mode is of pivotal importance for all-season energy-saving in buildings.In this work,we report the design and fabrication of bacterial cellulose-based Janus films(J-BC)with radiative cooling and solar heating properties,which were developed by two-step vacuum-assisted filtration of modified MXene-doped bacterial cellulose and modified silicon nitride(Si_(3)N_(4))-doped bacterial cellulose,followed by hot-pressing and drying treatments.The as-prepared J-BC films show a unique Janus structure where modified MXene nanosheets and cellulose nanofibers are on the bottom surface,and modified silicon nitride(Si_(3)N_(4))nanoparticles and cellulose nanofibers are on the top surface.The radiative cooling effect of J-BC films is enabled by the Si_(3)N_(4)-doped bacterial cellulose due to the high mid-infrared emissivity of Si_(3)N_(4) nanoparticles,which shows a high solar reflection of~98.1%and high emissivity of~93.6%in the atmospheric transparency window(8-13μm).Thanks to the enhanced photothermal conversion of the modified MXene nanosheets,a reduced solar reflection(6.6%)and relatively low thermal emissivity in the atmospheric window(71.4%)are achieved,making sure the solar heating effect of J-BC films.In the outdoor tests,J-BC films achieve a sub-ambient temperature drop of~3.8°C and an above-ambient temperature rise of~14.2°C.Numerical prediction demonstrated that the J-BC films with dual modes have great potential of all-season energy saving for buildings and a corresponding energy-saving map in China is also created.The work disclosed herein can provide an avenue for the shaping of advanced radiative cooling materials for emerging applications of personal thermal management,sustainable energy-efficient buildings,and beyond. 展开更多
关键词 Bacterial cellulose MXene nanosheets Radiative cooling solar heating Thermal management NANOSTRUCTURES Nanoparticles Thin films
原文传递
Design and optimization of thermally responsive autonomous dynamic glazed attachment systems for building solar heat gain control
14
作者 Neda Ghaeili Ardabili Yanxiao Feng Julian Wang 《Building Simulation》 SCIE EI CSCD 2023年第10期1971-1986,共16页
Windows,as transparent intermediaries between the indoors and outdoors,have a significant impact on building energy consumption and indoor visual and thermal comfort.With the recent development of dynamic window struc... Windows,as transparent intermediaries between the indoors and outdoors,have a significant impact on building energy consumption and indoor visual and thermal comfort.With the recent development of dynamic window structures,especially various attachment technologies,the thermal,visual,and energy performances of windows have been significantly improved.In this research,a new dynamic transparent louver structure sandwiched within conventional double-pane windows is proposed,designed,optimized,and examined in terms of energy savings in different climates.The uniqueness of the proposed design is that it autonomously responds to the seasonal needs prompted by solar heat gain through the use of thermally deflected bimetallic elements.Moreover,by integrating spectral selective louvers into the system design,the dynamic structure enables strong solar infrared modulation with a little visible variation.The optical and thermal properties of the dynamic glazing structure support about 30%and 16%seasonal variations in solar heat gains and visible transmittance,respectively.Furthermore,the potential energy savings were explored via parametric energy simulations,which showed significant potential for heating and cooling energy savings.This proposed design demonstrates a simple smart dynamic glazing structure driven by seasonal temperature differences,with significant solar heat control capabilities and minor effects on the visible or visual quality of the glazing system. 展开更多
关键词 smart window window attachment spectrally selective louver solar heat gain visible transmittance bimetal structure
原文传递
A new artificial photosynthetic system coupling photovoltaic electrocatalysis with solar heating catalysis
15
作者 Yaguang Li Fanqi Meng +5 位作者 Xianhua Bai Dachao Yuan Xingyuan San Shufang Wang Lin Gu Qingbo Meng 《National Science Open》 2023年第6期17-28,共12页
In this work,we present a novel artificial photosynthetic paradigm with square meter(m^(2))level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO_(2)hydrogenatio... In this work,we present a novel artificial photosynthetic paradigm with square meter(m^(2))level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO_(2)hydrogenation device,successfully achieving the synergy of 1 sun driven 19.4%solar to chemical energy efficiency(STC)for CO production(2.7 times higher than that of large-sized artificial photosynthetic systems)with a low cost(equivalent to 1/7 of reported artificial photosynthetic systems).Furthermore,the outdoor artificial photosynthetic demonstration with 1.268 m^(2)of scale exhibits the CO generation amount of 258.4 L per day,the STC of~15.5%for CO production in winter,which could recover the cost within 833 sunny days of operation by selling CO. 展开更多
关键词 artificial photosynthetic photovoltaic electrocatalysis solar heating catalysis CO_(2)hydrogenation low cost
原文传递
Exergo-Environmental Study of a Recent Organic Solar Hybrid Heat Pump
16
作者 Rabeb Toujani Nahla Bouaziz 《Fluid Dynamics & Materials Processing》 EI 2023年第4期991-1001,共11页
A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Pote... A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Potential.The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy.It is shown that Exergy Analysis itself is a valuable tool in energy integration.Within the imposed framework of minimizing total annual costs,entropy analysis can be instrumental in determining the optimal plant concept,optimizing energy conversion and use,and improving profitability.The present results are discussed under the optimistic hope that they may help to define new energy and environmental policies. 展开更多
关键词 Impact environmental exergy analysis CO_(2)emissions solar hybrid heat pump
下载PDF
Design and preliminary experimental research on a new biogas fermentation system by solar heat pipe heating 被引量:2
17
作者 Jiao Youzhou Li Pengfei +6 位作者 Li Gang Zhang Quanguo Ding Pan Wang Shaopeng Gao Zan Du Shuangli He Chao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第2期153-162,共10页
Biogas fermentation requires appropriate temperature,while the biogas fermentation can be affected by the low ambient temperature in winter.In order to overcome the negative effects of low temperature fermentation,a n... Biogas fermentation requires appropriate temperature,while the biogas fermentation can be affected by the low ambient temperature in winter.In order to overcome the negative effects of low temperature fermentation,a new type of solar heat pipe biogas fermentation heating system was designed and a preliminary experiment research on this system was conducted using cow manure as the raw material at 6%concentration and total fermentation volume of 175 L.The experimental results showed that when the system was in normal operation,the fermentation temperature rose every day by gradient.This gradient will gradually become smaller with the increase of fermentation liquid temperature,and the temperature can reach 38°C after stability.Using this solar heat pipe heating system,the fermentation liquid temperature can be increased by 5°C every sunny day.This solar heat pipe heating system plays a significant role in biogas fermentation.The results of economic analysis show that the system can realize the fermentation at constant temperatures of 25°C and 35°C respectively,and it can also save standard coal equivalent of 40 kg and 80 kg in winter and spring,respectively. 展开更多
关键词 Biogas fermentation solar heat pipe heating system fermentation temperature economic analysis
原文传递
Solar-heating boosted catalytic reduction of CO_(2) under full-solar spectrum 被引量:2
18
作者 Hongjia Wang Yanjie Wang +3 位作者 Lingju Guo Xuehua Zhang Caue Ribeiro Tao He 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期131-139,共9页
Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e... Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis. 展开更多
关键词 CO_(2) reduction Apparent activation energy Reaction kinetics solar heating Photo-thermal synergy
下载PDF
Experimental Study and Thermal Modelling of Cocoa Shell Convective Drying in an Indirect Solar Dryer
19
作者 Siaka Touré Adjo Christelle Ogo Modibo Sidibé 《Modeling and Numerical Simulation of Material Science》 2024年第2期69-78,共10页
The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced ... The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined. 展开更多
关键词 Shells of Cocoa Pods Indirect solar Dryer Moisture Evaporated Constants of the Nusselt Number Convective heat Transfer Coefficient
下载PDF
Parametric analysis of a packed bed thermal storage device with phase change material capsules in a solar heating system application
20
作者 Long Gao Gegentana +3 位作者 Junchao Bai Baizhong Sun Deyong Che Shaohua Li 《Building Simulation》 SCIE EI CSCD 2021年第3期523-533,共11页
The goal of this study is to investigate the effect of key design parameters on the thermal performance of the packed bed heat storage device by numerical calculation.A one-dimensional,non-equilibrium packed bed laten... The goal of this study is to investigate the effect of key design parameters on the thermal performance of the packed bed heat storage device by numerical calculation.A one-dimensional,non-equilibrium packed bed latent heat storage mathematical model was established and the applicability of the model was verified.The results demonstrate that the inlet temperature of the heat transfer fluid(HTF)had the greatest influence on each index.When the inlet temperature increased from 333 K to 363 K,exergy destruction increased threefold,effective heat storage time decreased by 67%,effective heat storage increased by 38%,and exergy efficiency decreased by 11%.The decrease of the capsule diameter had a positive effect on each evaluation index.According to the sensitivity analysis,the order of importance of each parameter within their variation range was HTF inlet temperature,HTF flow rate,PCM capsule size and PCM initial temperature. 展开更多
关键词 packed bed thermal energy storage solar heating system performance evaluation parametric analysis
原文传递
上一页 1 2 240 下一页 到第
使用帮助 返回顶部