In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid th...In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid theory, a new multicomponent plasma expansion model is proposed in this study, which takes into account the effects of ion species, ion number, initial discharge current, and Low Earth Orbit(LEO) plasma environment. The expansion simulation of single-component and multicomponent ions is carried out respectively, and the variations of plasma number density, expansion distance, and speed during the expansion process are obtained.Compared with the experimental results, the evolution of propagation distance and speed is closed and the error is within a reasonable range, which verifies the validity and rationality of the model. The propagation characteristics of the primary discharge on the solar array surface and the influence of the initial value on the maximum propagation distance and the propagation current peaks are investigated. This study can provide important theoretical support for the propagation and evolution of the primary discharge and the key behavior of the transition to secondary discharge on spacecraft solar array.展开更多
We use a dual Einstein-Kaluza spacetime to calculate the exact energy density of dark energy and dark matter using a novel topological computation method. Starting from the said spacetime and ‘tHooft’s topological r...We use a dual Einstein-Kaluza spacetime to calculate the exact energy density of dark energy and dark matter using a novel topological computation method. Starting from the said spacetime and ‘tHooft’s topological renormalon as well as the corresponding symmetry group, we show how the zero set quantum particle and the empty set quantum wave interact with the vacuum and give rise to pure dark energy and pure dark matter all along with ordinary energy density of the cosmos. The consistency of the exact calculation and the accurate observations attests to the reality of ‘tHooft’s renormalon dark matter, pure dark energy and accelerated cosmic expansion.展开更多
Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations...Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations in solar wind and interplanetary magnetic field(IMF).It is the most spectacular variability in the GCR intensity which appears to be the compass for investigators seeking solar-terrestrial relationships.The method of selection and validation of FD events is very important to cosmic ray(CR)scientists.We have deployed new computer software to determine the amplitude and timing of FDs from daily-averaged CR data at Oulu Neutron Monitor station.The code selected 230 FDs between 1998 and 2002.In an attempt to validate the new FD automated catalog,the relationship between the amplitude of FDs,and IMF,solar wind speed(SWS)and geomagnetic storm indices(Dst,kp,ap)is tested here.A two-dimensional regression analysis indicates significant linear relationship between large FDs(CR(%)≤-3)and solar wind data and geomagnetic storm indices in the present sample.The implications of the relationship among these parameters are discussed.展开更多
Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water syst...Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water system are conducted in this paper, and overall performance of DX-SAHP is analyzed with three different structures of collectors/evaporators, namely a bare-plate collector, a glass-plate collector and double collectors/evaporators (a bare-plate collector and a glass-plate collector). The influence factors and overall performance are studied, which show that the overall performance of the system is mainly influenced by solar irradiation intensity and the collector area. Comparing with glass-plate collector in similar conditions, bare-plate collector system COP is higher. While increasing collector area is conducive to improve the system COP, but will reduce the collector efficiency and increase the workload of the compressor by comparing the bare-plate collector with double-plate collectors.展开更多
We present the results of an investigation of the relation between space-weather parameters and cosmic ray(CR)intensity modulation using algorithm-selected Forbush decreases(FDs)from Moscow(MOSC)and Apatity(APTY)neutr...We present the results of an investigation of the relation between space-weather parameters and cosmic ray(CR)intensity modulation using algorithm-selected Forbush decreases(FDs)from Moscow(MOSC)and Apatity(APTY)neutron monitor(NM)stations during solar cycle 23.Our FD location program detected 408 and 383 FDs from MOSC and APTY NM stations respectively.A coincident computer code employed in this work detected 229 FDs that were observed at the same Universal Time(UT)at the two stations.Out of the 229 simultaneous FDs,we formed a subset of 139 large FDs(%)≤-4 at the MOSC station.We performed a two-dimensional regression analysis between the FD magnitudes and the space-weather data on the two samples.We find that there were significant space-weather disturbances at the time of the CR flux depressions.The correlation between the space-weather parameters and decreases in galactic cosmic ray(GCR)intensity at the two NM stations is statistically significant.The implications of the present space-weather data on CR intensity depressions are highlighted.展开更多
This study aims to determine the influential role of the meteorological, solar, and geophysical factors and cosmic rays on the transmission of COVID-19 in Riyadh, Saudi Arabia. The meteorological factors were air temp...This study aims to determine the influential role of the meteorological, solar, and geophysical factors and cosmic rays on the transmission of COVID-19 in Riyadh, Saudi Arabia. The meteorological factors were air temperature, relative humidity, wind speed, and atmospheric pressure. The solar radio flux, Dst index, and solar wind speed were utilized as representatives of the solar and geophysical variables. The association between these variables and the COVID-19 pandemic cases from 3 April 2020 to 1 August 2021 was investigated using the Spearman and Kendall rank correlation tests. The obtained results showed that the air temperature and average wind speed are positively associated with the daily number of reported COVID-19 cases. On the other hand, the mean values of relative humidity and atmospheric pressure are inversely correlated with the number of COVID-19 cases in Riyadh. Moreover, the results showed that the Dst index and cosmic rays are positively correlated with the COVID-19 cases. Contrarily, solar wind speed and radio flux at 10.7 cm have negative correlations with the COVID-19 cases. The obtained results will help the epidemiologists to understand the behavior of the virus against meteorological, solar, and geophysical variables and can be considered as a useful supplement to help national and international organizations and healthcare policymakers in the process of strategizing to combat COVID-19.展开更多
顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用...顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用2007—2020年的气象、电离层和气候星座观测系统(Constellation Observing System for Meteorology,Ionosphere and Climate,COSMIC)掩星观测数据,提取有效电子密度剖面数据的顶部标高,分析了其随地方时、季节、经纬度和太阳活动水平的变化特性。结果表明:顶部标高具有明显的日变化和季节变化规律,并且表现出强烈的太阳活动依赖性;顶部标高在纬度上的变化强烈依赖于地方时,同时在东西经向上表现出明显的波状结构,且这种经度波状结构在南北半球具有不同的形态;顶部标高在夏季半球具有显著的东西经向差异,南半球夏季更为明显。展开更多
In this study, annual, quarterly, and monthly mean precipitation data in Saudi Arabia were correlated with sunspot number (SSN) and galactic cosmic ray (CR) flux over 35 years (1985-2019). The results show that the st...In this study, annual, quarterly, and monthly mean precipitation data in Saudi Arabia were correlated with sunspot number (SSN) and galactic cosmic ray (CR) flux over 35 years (1985-2019). The results show that the strength, magnitude, proportion and statistical significance of the relationship between precipitation and the two variables varied by season and month. We find that mean annual precipitation in Saudi Arabia, from May to November, and summer and autumn are correlated with cosmic rays and inversely correlated with SSN. Correlations of varying intensities and scales were found during the remaining months and during winter and spring. The relationships between the rainfall and SSN and CR for each solar cycle were investigated and showed that for all three cycles, the annual rainfall over Saudi Arabia has a positive correlation with CR. Different results were obtained when the seasonal rainfall data correlated with the SSNs and CRs during each cycle. The results obtained, in terms of their strength and magnitude, are affected by terrestrial and extra-terrestrial factors. These factors have been briefly presented and discussed. These findings represent a step towards understanding the possible role of solar activity in climate change for future meteorological phenomenon forecasting, even if the physical mechanism is still poorly quantified.展开更多
We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or...We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.展开更多
The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum ...The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by integer approximation and an exact solution of the dark energy density behind cosmic expansion.展开更多
In the present work, the study of influence of solar activity, cosmic ray intensity and geomagnetic activity on Earth’s climate during solar cycles 22, 23 and 24 has been done. The change in Earth’s climate, specifi...In the present work, the study of influence of solar activity, cosmic ray intensity and geomagnetic activity on Earth’s climate during solar cycles 22, 23 and 24 has been done. The change in Earth’s climate, specifically the change in the global mean temperature has been associated with the variation of some solar activity indices, cosmic ray intensity and geomagnetic activity indices in the period of 1986-2014 (Till Dec.). The important solar indices that are total solar irradiance (TSI), Sunspot Number (SSN), F10.7 index, Cosmic Ray Intensity (CRI) Kiel (NM), geomagnetic activity indices Auroral Electrojet Index (AE) and aa index, have been presented. The study of the Earth’s climate in relationship with solar activity, cosmic ray intensity and geomagnetic activity has been analysed with variations and correlations. The variations of SSN with CRI are in anti-phase;SSN with F10.7, SSN with TSI, SSN with AE, SSN with aa are in same phase. The correlation of SSN with CRI is strongly negatively correlated;SSN with F10.7, SSN with TSI is strongly positively and SSN with AE, SSN with aa positively correlated to averaging solar cycles 22, 23 and 24. The Earth’s climate will be affected by the solar activity, cosmic ray intensity and geomagnetic activity.展开更多
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show th...The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.展开更多
We study the relation between monthly average counting rates of the cosmic ray intensity (CRI) observed at Moscow Neutron Monitoring Station, solar flare index (SFI) and coronal index during the solar cycles 22 and 23...We study the relation between monthly average counting rates of the cosmic ray intensity (CRI) observed at Moscow Neutron Monitoring Station, solar flare index (SFI) and coronal index during the solar cycles 22 and 23, for the period 1986-2008. The long-term behaviour of various solar activity parameters: sunspot numbers (SSN), solar flare index (Hα flare index), coronal index (CI) in relation to the duration of solar cycles 22 and 23 is examined. We find that the correlation coefficient of CRI with the coronal index as well as Hα flare index is relatively large anti-correlation during solar cycle 22. However, the monthly mean values of sunspot number, Hα flare index, and coronal index are well positively correlated with each other. We have analyzed the statistical analysis of the above parameters using of linear model and second order polynomial fits model.展开更多
Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evalua...Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays(GCRs),solar protons,and by supernova remnants.The attenuation length of GCR ionization is updated as 118 g cm^-2,which is approximately 20% larger than the popular value.Hard and soft possible spectra of solar protons give comparable and 20% smaller attenuation lengths compared with those from standard GCR spectra,respectively,while the attenuation length is approximately 10% larger for supernova remnants.Further,all of the attenuation lengths become 10% larger in the compound gas of cosmic abundance,e.g.128 g cm^-2 for GCRs,which can affect the minimum estimate of the size of dead zones in protoplanetary disks when the incident flux is unusually high.展开更多
We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict ...We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.展开更多
The abrupt aperiodic modulation of cosmic ray(CR)flux intensity,often referred to as Forbush decrease(FD),plays a significant role in our understanding of the Sun-Earth electrodynamics.Accurate and precise determinati...The abrupt aperiodic modulation of cosmic ray(CR)flux intensity,often referred to as Forbush decrease(FD),plays a significant role in our understanding of the Sun-Earth electrodynamics.Accurate and precise determinations of FD magnitude and timing are among the intractable problems in FD-based analysis.FD identification is complicated by CR diurnal anisotropy.CR anisotropy can increase or reduce the number and amplitude of FDs.It is therefore important to remove its contributions from CR raw data before FD identification.Recently,an attempt was made,using a combination of the Fourier transform technique and FD-location machine,to address this.Thus,two FD catalogs and amplitude diurnal variation(ADV)were calculated from filtered(FD1 and ADV)and raw(FD2)CR data.In the current work,we test the empirical relationship between FD1,FD2,ADV and solar-geophysical characteristics.Our analysis shows that two types of magnetic fields-interplanetary and geomagnetic(Dst)-govern the evolution of CR flux intensity reductions.展开更多
The energy of solar radiation absorbed by the Earth,as well as the thermal radiation of the Earth’s surface,which is released to the space through the atmospheric transparency window,depends on variations of the area...The energy of solar radiation absorbed by the Earth,as well as the thermal radiation of the Earth’s surface,which is released to the space through the atmospheric transparency window,depends on variations of the area of the cloud cover.Svensmark et al.suggest that the increase in the area of the cloud cover in the lower atmosphere,presumably caused by an increase in the flux of galactic cosmic rays during the quasi-bicentennial minimum of solar activity,results only in an increase in the fraction of the solar radiation reflected back to the space and weakens the flux of the solar radiation that reached the Earth surface.It is suggested,without any corresponding calculations of the variations of the average annual energy balance of the EarthЕ,that the consequences will include only a deficit of the solar energy absorbed by the Earth and a cooling of the climate up to the onset of the Little Ice Age.These suggestions ignore simultaneous impact of the opposite aspects of the increase in the area of the cloud cover on the climate warming.The latter will result from a decrease in the power of thermal radiation of the Earth’s surface released to the space,and also in the power of the solar radiation reflected from the Earth’s surface,due to the increase in their absorption and reflection back to the surface.A substantial strengthening in the greenhouse effect and the narrowing of the atmospheric transparency window will also occur.Here,we estimate the impact of all aspects of possible long-term 2%growth of the cloud cover area in the lower atmosphere byЕ.We found that an increase in the cloud cover area in the lower atmosphere will result simultaneously both in the decrease and in the increase in the temperature,which will virtually compensate each other,while the energy balance of the Earth E before and after the increase in the cloud cover area by 2%will stay essentially the same:E1-E0≈0.展开更多
We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result ...We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result in conjunction with Newtonian classical mechanics to show that the ordinary measurable cosmic energy density is given by while the dark energy density is obviously the Legendre transformation dual energy E(D) = 1 -?E(O). The result is in complete agreement with the COBE, WMAP and type 1a supernova measurements.展开更多
The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also...The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also a concurrent to GMA and solar activity force-cosmic ray activity (CRA) and closely related high energy neutron and proton fluxes are studied as a forces dominating at low GMA and solar activity in relation to considered medical events. The aim of this study was to explore the distribution of some important medical events on days with “Zero” GMA levels, accompanied by high CRA (neutron activity). Medical event data of the Grand Baku region (more than 3 mln inhabitants), Azerbaijan, with daily distribution on the time 1 Dec. 2002-31 Dec. 2007 was compared to daily GMA Kp indices in general (Kp > 0, 1837 days) and 34 days daily GMA indices Kp = 0. Daily CRA data was also compared using neutron monitoring data from two stations. Daily averaged data and their standard deviations on the mentioned GMA levels were compared and statistical significance was established. Results revealed a significant rise in the number of emergencies (n = 1,567,576) and total deaths number (n = 46,360) at the days of “Zero” GMA level. These days were accompanied by significant rise of CRA (neutron activity). For Sudden Cardiac Deaths (SCD, n = 1615) and cerebral stroke (CVA, n =10,054) the increase achieved strong trend to significance level. Acute Myocardial Infarction occurrence (morbidity) and trauma were also absolutely more registered at days with “Zero” GMA level, despite the small number of such days. The average Infection numbers show an inverse relationship with absolutely high registry at the “Zero” GMA level days. Study linking environmental physical activity levels and the human medical data shows that geomagnetic field variations accompanied by the increased level of cosmic ray activity, can have either direct or indirect adverse effects on human health and physiology, even when the magnitude of the geomagnetic field disturbance is extremely small or even is equal to zero. On days of “Zero” daily Kp indices describing Geomagnetic Activity, accompanied by high Cosmic Ray Activity (neutron activity), more medical emergencies and total death number (daily) occurred. Sudden Cardiac Deaths and Cerebral Stroke numbers show a strong trend to significant rise. Absolute increase of number of Acute Myocardial Infarction and less Infections, not achieving statistical significance, was also observed. These results are additional data for considering Cosmic Ray Activity (neutron activity) as an additional factor involved in time distribution of human medical events.展开更多
In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscali...In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.展开更多
基金supported by National Natural Science Foundation of China (Nos. 51937004 and 51977002)sponsored by Beijing Nova Program (No. 20220484153)。
文摘In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid theory, a new multicomponent plasma expansion model is proposed in this study, which takes into account the effects of ion species, ion number, initial discharge current, and Low Earth Orbit(LEO) plasma environment. The expansion simulation of single-component and multicomponent ions is carried out respectively, and the variations of plasma number density, expansion distance, and speed during the expansion process are obtained.Compared with the experimental results, the evolution of propagation distance and speed is closed and the error is within a reasonable range, which verifies the validity and rationality of the model. The propagation characteristics of the primary discharge on the solar array surface and the influence of the initial value on the maximum propagation distance and the propagation current peaks are investigated. This study can provide important theoretical support for the propagation and evolution of the primary discharge and the key behavior of the transition to secondary discharge on spacecraft solar array.
文摘We use a dual Einstein-Kaluza spacetime to calculate the exact energy density of dark energy and dark matter using a novel topological computation method. Starting from the said spacetime and ‘tHooft’s topological renormalon as well as the corresponding symmetry group, we show how the zero set quantum particle and the empty set quantum wave interact with the vacuum and give rise to pure dark energy and pure dark matter all along with ordinary energy density of the cosmos. The consistency of the exact calculation and the accurate observations attests to the reality of ‘tHooft’s renormalon dark matter, pure dark energy and accelerated cosmic expansion.
文摘Forbush decrease(FD),discovered by Scott E.Forbush about 80 years ago,is referred to as the non-repetitive short-term depression in Galactic cosmic ray(GCR)flux,presumed to be associated with large-scale perturbations in solar wind and interplanetary magnetic field(IMF).It is the most spectacular variability in the GCR intensity which appears to be the compass for investigators seeking solar-terrestrial relationships.The method of selection and validation of FD events is very important to cosmic ray(CR)scientists.We have deployed new computer software to determine the amplitude and timing of FDs from daily-averaged CR data at Oulu Neutron Monitor station.The code selected 230 FDs between 1998 and 2002.In an attempt to validate the new FD automated catalog,the relationship between the amplitude of FDs,and IMF,solar wind speed(SWS)and geomagnetic storm indices(Dst,kp,ap)is tested here.A two-dimensional regression analysis indicates significant linear relationship between large FDs(CR(%)≤-3)and solar wind data and geomagnetic storm indices in the present sample.The implications of the relationship among these parameters are discussed.
文摘Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water system are conducted in this paper, and overall performance of DX-SAHP is analyzed with three different structures of collectors/evaporators, namely a bare-plate collector, a glass-plate collector and double collectors/evaporators (a bare-plate collector and a glass-plate collector). The influence factors and overall performance are studied, which show that the overall performance of the system is mainly influenced by solar irradiation intensity and the collector area. Comparing with glass-plate collector in similar conditions, bare-plate collector system COP is higher. While increasing collector area is conducive to improve the system COP, but will reduce the collector efficiency and increase the workload of the compressor by comparing the bare-plate collector with double-plate collectors.
文摘We present the results of an investigation of the relation between space-weather parameters and cosmic ray(CR)intensity modulation using algorithm-selected Forbush decreases(FDs)from Moscow(MOSC)and Apatity(APTY)neutron monitor(NM)stations during solar cycle 23.Our FD location program detected 408 and 383 FDs from MOSC and APTY NM stations respectively.A coincident computer code employed in this work detected 229 FDs that were observed at the same Universal Time(UT)at the two stations.Out of the 229 simultaneous FDs,we formed a subset of 139 large FDs(%)≤-4 at the MOSC station.We performed a two-dimensional regression analysis between the FD magnitudes and the space-weather data on the two samples.We find that there were significant space-weather disturbances at the time of the CR flux depressions.The correlation between the space-weather parameters and decreases in galactic cosmic ray(GCR)intensity at the two NM stations is statistically significant.The implications of the present space-weather data on CR intensity depressions are highlighted.
文摘This study aims to determine the influential role of the meteorological, solar, and geophysical factors and cosmic rays on the transmission of COVID-19 in Riyadh, Saudi Arabia. The meteorological factors were air temperature, relative humidity, wind speed, and atmospheric pressure. The solar radio flux, Dst index, and solar wind speed were utilized as representatives of the solar and geophysical variables. The association between these variables and the COVID-19 pandemic cases from 3 April 2020 to 1 August 2021 was investigated using the Spearman and Kendall rank correlation tests. The obtained results showed that the air temperature and average wind speed are positively associated with the daily number of reported COVID-19 cases. On the other hand, the mean values of relative humidity and atmospheric pressure are inversely correlated with the number of COVID-19 cases in Riyadh. Moreover, the results showed that the Dst index and cosmic rays are positively correlated with the COVID-19 cases. Contrarily, solar wind speed and radio flux at 10.7 cm have negative correlations with the COVID-19 cases. The obtained results will help the epidemiologists to understand the behavior of the virus against meteorological, solar, and geophysical variables and can be considered as a useful supplement to help national and international organizations and healthcare policymakers in the process of strategizing to combat COVID-19.
文摘顶部电离层是指F2层电子密度最大值所在高度以上的电离层区域。掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究具有重要作用。标高是构建顶部以上电离层电子密度剖面模型的重要参数。本文使用2007—2020年的气象、电离层和气候星座观测系统(Constellation Observing System for Meteorology,Ionosphere and Climate,COSMIC)掩星观测数据,提取有效电子密度剖面数据的顶部标高,分析了其随地方时、季节、经纬度和太阳活动水平的变化特性。结果表明:顶部标高具有明显的日变化和季节变化规律,并且表现出强烈的太阳活动依赖性;顶部标高在纬度上的变化强烈依赖于地方时,同时在东西经向上表现出明显的波状结构,且这种经度波状结构在南北半球具有不同的形态;顶部标高在夏季半球具有显著的东西经向差异,南半球夏季更为明显。
文摘In this study, annual, quarterly, and monthly mean precipitation data in Saudi Arabia were correlated with sunspot number (SSN) and galactic cosmic ray (CR) flux over 35 years (1985-2019). The results show that the strength, magnitude, proportion and statistical significance of the relationship between precipitation and the two variables varied by season and month. We find that mean annual precipitation in Saudi Arabia, from May to November, and summer and autumn are correlated with cosmic rays and inversely correlated with SSN. Correlations of varying intensities and scales were found during the remaining months and during winter and spring. The relationships between the rainfall and SSN and CR for each solar cycle were investigated and showed that for all three cycles, the annual rainfall over Saudi Arabia has a positive correlation with CR. Different results were obtained when the seasonal rainfall data correlated with the SSNs and CRs during each cycle. The results obtained, in terms of their strength and magnitude, are affected by terrestrial and extra-terrestrial factors. These factors have been briefly presented and discussed. These findings represent a step towards understanding the possible role of solar activity in climate change for future meteorological phenomenon forecasting, even if the physical mechanism is still poorly quantified.
文摘We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.
文摘The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by integer approximation and an exact solution of the dark energy density behind cosmic expansion.
文摘In the present work, the study of influence of solar activity, cosmic ray intensity and geomagnetic activity on Earth’s climate during solar cycles 22, 23 and 24 has been done. The change in Earth’s climate, specifically the change in the global mean temperature has been associated with the variation of some solar activity indices, cosmic ray intensity and geomagnetic activity indices in the period of 1986-2014 (Till Dec.). The important solar indices that are total solar irradiance (TSI), Sunspot Number (SSN), F10.7 index, Cosmic Ray Intensity (CRI) Kiel (NM), geomagnetic activity indices Auroral Electrojet Index (AE) and aa index, have been presented. The study of the Earth’s climate in relationship with solar activity, cosmic ray intensity and geomagnetic activity has been analysed with variations and correlations. The variations of SSN with CRI are in anti-phase;SSN with F10.7, SSN with TSI, SSN with AE, SSN with aa are in same phase. The correlation of SSN with CRI is strongly negatively correlated;SSN with F10.7, SSN with TSI is strongly positively and SSN with AE, SSN with aa positively correlated to averaging solar cycles 22, 23 and 24. The Earth’s climate will be affected by the solar activity, cosmic ray intensity and geomagnetic activity.
文摘The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.
文摘We study the relation between monthly average counting rates of the cosmic ray intensity (CRI) observed at Moscow Neutron Monitoring Station, solar flare index (SFI) and coronal index during the solar cycles 22 and 23, for the period 1986-2008. The long-term behaviour of various solar activity parameters: sunspot numbers (SSN), solar flare index (Hα flare index), coronal index (CI) in relation to the duration of solar cycles 22 and 23 is examined. We find that the correlation coefficient of CRI with the coronal index as well as Hα flare index is relatively large anti-correlation during solar cycle 22. However, the monthly mean values of sunspot number, Hα flare index, and coronal index are well positively correlated with each other. We have analyzed the statistical analysis of the above parameters using of linear model and second order polynomial fits model.
基金supported by JSPS KAKENHI Grant Number 26106006 and 15K13581
文摘Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays(GCRs),solar protons,and by supernova remnants.The attenuation length of GCR ionization is updated as 118 g cm^-2,which is approximately 20% larger than the popular value.Hard and soft possible spectra of solar protons give comparable and 20% smaller attenuation lengths compared with those from standard GCR spectra,respectively,while the attenuation length is approximately 10% larger for supernova remnants.Further,all of the attenuation lengths become 10% larger in the compound gas of cosmic abundance,e.g.128 g cm^-2 for GCRs,which can affect the minimum estimate of the size of dead zones in protoplanetary disks when the incident flux is unusually high.
文摘We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.
文摘The abrupt aperiodic modulation of cosmic ray(CR)flux intensity,often referred to as Forbush decrease(FD),plays a significant role in our understanding of the Sun-Earth electrodynamics.Accurate and precise determinations of FD magnitude and timing are among the intractable problems in FD-based analysis.FD identification is complicated by CR diurnal anisotropy.CR anisotropy can increase or reduce the number and amplitude of FDs.It is therefore important to remove its contributions from CR raw data before FD identification.Recently,an attempt was made,using a combination of the Fourier transform technique and FD-location machine,to address this.Thus,two FD catalogs and amplitude diurnal variation(ADV)were calculated from filtered(FD1 and ADV)and raw(FD2)CR data.In the current work,we test the empirical relationship between FD1,FD2,ADV and solar-geophysical characteristics.Our analysis shows that two types of magnetic fields-interplanetary and geomagnetic(Dst)-govern the evolution of CR flux intensity reductions.
文摘The energy of solar radiation absorbed by the Earth,as well as the thermal radiation of the Earth’s surface,which is released to the space through the atmospheric transparency window,depends on variations of the area of the cloud cover.Svensmark et al.suggest that the increase in the area of the cloud cover in the lower atmosphere,presumably caused by an increase in the flux of galactic cosmic rays during the quasi-bicentennial minimum of solar activity,results only in an increase in the fraction of the solar radiation reflected back to the space and weakens the flux of the solar radiation that reached the Earth surface.It is suggested,without any corresponding calculations of the variations of the average annual energy balance of the EarthЕ,that the consequences will include only a deficit of the solar energy absorbed by the Earth and a cooling of the climate up to the onset of the Little Ice Age.These suggestions ignore simultaneous impact of the opposite aspects of the increase in the area of the cloud cover on the climate warming.The latter will result from a decrease in the power of thermal radiation of the Earth’s surface released to the space,and also in the power of the solar radiation reflected from the Earth’s surface,due to the increase in their absorption and reflection back to the surface.A substantial strengthening in the greenhouse effect and the narrowing of the atmospheric transparency window will also occur.Here,we estimate the impact of all aspects of possible long-term 2%growth of the cloud cover area in the lower atmosphere byЕ.We found that an increase in the cloud cover area in the lower atmosphere will result simultaneously both in the decrease and in the increase in the temperature,which will virtually compensate each other,while the energy balance of the Earth E before and after the increase in the cloud cover area by 2%will stay essentially the same:E1-E0≈0.
文摘We determine the limit of the ratio formed by the independent components of the Riemann tensor to the non-zero component as space dimensionality tends to infinity and find it to be 12. Subsequently we use this result in conjunction with Newtonian classical mechanics to show that the ordinary measurable cosmic energy density is given by while the dark energy density is obviously the Legendre transformation dual energy E(D) = 1 -?E(O). The result is in complete agreement with the COBE, WMAP and type 1a supernova measurements.
文摘The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also a concurrent to GMA and solar activity force-cosmic ray activity (CRA) and closely related high energy neutron and proton fluxes are studied as a forces dominating at low GMA and solar activity in relation to considered medical events. The aim of this study was to explore the distribution of some important medical events on days with “Zero” GMA levels, accompanied by high CRA (neutron activity). Medical event data of the Grand Baku region (more than 3 mln inhabitants), Azerbaijan, with daily distribution on the time 1 Dec. 2002-31 Dec. 2007 was compared to daily GMA Kp indices in general (Kp > 0, 1837 days) and 34 days daily GMA indices Kp = 0. Daily CRA data was also compared using neutron monitoring data from two stations. Daily averaged data and their standard deviations on the mentioned GMA levels were compared and statistical significance was established. Results revealed a significant rise in the number of emergencies (n = 1,567,576) and total deaths number (n = 46,360) at the days of “Zero” GMA level. These days were accompanied by significant rise of CRA (neutron activity). For Sudden Cardiac Deaths (SCD, n = 1615) and cerebral stroke (CVA, n =10,054) the increase achieved strong trend to significance level. Acute Myocardial Infarction occurrence (morbidity) and trauma were also absolutely more registered at days with “Zero” GMA level, despite the small number of such days. The average Infection numbers show an inverse relationship with absolutely high registry at the “Zero” GMA level days. Study linking environmental physical activity levels and the human medical data shows that geomagnetic field variations accompanied by the increased level of cosmic ray activity, can have either direct or indirect adverse effects on human health and physiology, even when the magnitude of the geomagnetic field disturbance is extremely small or even is equal to zero. On days of “Zero” daily Kp indices describing Geomagnetic Activity, accompanied by high Cosmic Ray Activity (neutron activity), more medical emergencies and total death number (daily) occurred. Sudden Cardiac Deaths and Cerebral Stroke numbers show a strong trend to significant rise. Absolute increase of number of Acute Myocardial Infarction and less Infections, not achieving statistical significance, was also observed. These results are additional data for considering Cosmic Ray Activity (neutron activity) as an additional factor involved in time distribution of human medical events.
文摘In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where . It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely . Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to . Remembering that the kinetic energy is , then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy . As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.