Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distribu...Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distributed solar refrigeration system, comprising an evacuated U-tube solar collector and elastocaloric refrigerator, is theoretically introduced. Theoretical formulations for the energy efficiency and cooling power of the solar refrigeration system are presented to facilitate predictive assessments of the performance properties. Under typical conditions, the energy efficiency and cooling power of the solar refrigeration system are,respectively, 4.84% and 200.15 W. Subsequently, an extensive parameter study is conducted to comprehensively uncover key performance influencers and identify avenues for improvement. In addition, local sensitivity analyses identify that the length ratio is the top influential parameter, while the heat transfer fluid flow rate is the least sensitivity. A pragmatic case study,conducted with the weather data of Ningbo City, China, serves to empirically predict the performance of the hybrid system within the constraints of practical circumstances.展开更多
A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation ene...A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation energy and solar receiver is conducted in this paper.The non-equilibrium radiation thermodynamic system is described.The thermodynamic process of photo-thermal interaction between the solar radiation and solar receiver is introduced.Energy,exergy and entropy equations for the photo-thermal process are provided.Formulas for calculating the optimum receiving temperatures of the solar receiver under both non-concentration and solar concentration conditions are presented.A simple solar receiver is chosen as the calculation example to launch the exergy analysis under non-concentration condition.Furthermore,the effect analysis of solar concentration on the thermodynamic performance of the solar receiver for solar thermal utilization is carried out.The analysis results demonstrate that both the output exergy flux and efficiency of the solar receiver can be improved by increasing the solar concentration ratio during the solar thermal utilization process.The formulas and results provided in this paper may be used as a theoretical reference for the further studies of non-equilibrium radiation thermodynamic theory and solar thermal utilization.展开更多
The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with...The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with the conventional building envelope,the main novities of the proposed facade module lie in its contributions towards the supplied water preheating to loads and the internal heat gain reduction.Besides,the proposed building-integrated solar facade water heating system broadens the combination modes of the solar thermal system and the building envelope.A dynamic model is introduced first for system design and performance prediction.To evaluate the energy-saving potential and feasibility of the implementation of the proposed facade module,this paper carried out a suitable case study by replacing the conventional facade module in the ongoing retrofitting project of a kitchen,part of the canteen of a graduate school.The detailed thermal performances of three system design options are compared in the typical winter and summer weeks and throughout the year,and then,with the preferred system design,the economic,energy,and environmental effects of the proposed system are evaluated.It was found that the system with a high flow rate of the circulating water is suggested.The annual electricity saved reaches 4175.3 kWh with yearly average thermal efficiency at 46.9%,and its corresponding cost payback time,energy payback time,and greenhouse gas payback time are 3.8,1.7,1.7 years,respectively.This study confirms the feasibility and long-term benefits of the proposed building-integrated solar facade water heating system in buildings.展开更多
Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand...Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.展开更多
基金supported by the Baima Lake Laboratory Joint Funds of the Zhejiang Natural Science Foundation of China(Grant No.LBMHY24E060010)。
文摘Refrigeration challenges in regions with electricity shortages significantly decrease the quality of life for residents. In response to the prevalent refrigeration challenges in power-deficient areas, a novel distributed solar refrigeration system, comprising an evacuated U-tube solar collector and elastocaloric refrigerator, is theoretically introduced. Theoretical formulations for the energy efficiency and cooling power of the solar refrigeration system are presented to facilitate predictive assessments of the performance properties. Under typical conditions, the energy efficiency and cooling power of the solar refrigeration system are,respectively, 4.84% and 200.15 W. Subsequently, an extensive parameter study is conducted to comprehensively uncover key performance influencers and identify avenues for improvement. In addition, local sensitivity analyses identify that the length ratio is the top influential parameter, while the heat transfer fluid flow rate is the least sensitivity. A pragmatic case study,conducted with the weather data of Ningbo City, China, serves to empirically predict the performance of the hybrid system within the constraints of practical circumstances.
基金This study is financially supported by the Excellent Youth Foundation of Jilin Province of China(Grant No.20190103062JH)the Special Project for the Outstanding Youth Cultivation of Jilin City of China(Grant No.20190104126).
文摘A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation energy and solar receiver is conducted in this paper.The non-equilibrium radiation thermodynamic system is described.The thermodynamic process of photo-thermal interaction between the solar radiation and solar receiver is introduced.Energy,exergy and entropy equations for the photo-thermal process are provided.Formulas for calculating the optimum receiving temperatures of the solar receiver under both non-concentration and solar concentration conditions are presented.A simple solar receiver is chosen as the calculation example to launch the exergy analysis under non-concentration condition.Furthermore,the effect analysis of solar concentration on the thermodynamic performance of the solar receiver for solar thermal utilization is carried out.The analysis results demonstrate that both the output exergy flux and efficiency of the solar receiver can be improved by increasing the solar concentration ratio during the solar thermal utilization process.The formulas and results provided in this paper may be used as a theoretical reference for the further studies of non-equilibrium radiation thermodynamic theory and solar thermal utilization.
基金the financial supports from Foshan Science and Technology Innovation Project(2018IT100363)Guangdong Basic and Applied Basic Research Foundation(2022A1515110180)Guangdong Technology-transfer Center for the Commercialization of University-Innovations(zc01010000059).
文摘The design and potential application analysis of the novel solar-absorbing integrated facade module and its corresponding building-integrated solar facade water heating system are presented in this study.Compared with the conventional building envelope,the main novities of the proposed facade module lie in its contributions towards the supplied water preheating to loads and the internal heat gain reduction.Besides,the proposed building-integrated solar facade water heating system broadens the combination modes of the solar thermal system and the building envelope.A dynamic model is introduced first for system design and performance prediction.To evaluate the energy-saving potential and feasibility of the implementation of the proposed facade module,this paper carried out a suitable case study by replacing the conventional facade module in the ongoing retrofitting project of a kitchen,part of the canteen of a graduate school.The detailed thermal performances of three system design options are compared in the typical winter and summer weeks and throughout the year,and then,with the preferred system design,the economic,energy,and environmental effects of the proposed system are evaluated.It was found that the system with a high flow rate of the circulating water is suggested.The annual electricity saved reaches 4175.3 kWh with yearly average thermal efficiency at 46.9%,and its corresponding cost payback time,energy payback time,and greenhouse gas payback time are 3.8,1.7,1.7 years,respectively.This study confirms the feasibility and long-term benefits of the proposed building-integrated solar facade water heating system in buildings.
文摘Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.